Spectral Properties of \(k\)-Quasi \(^*\)Parahyponormal Operators

Authors

  • D. Senthilkumar Post Graduate and Research Department of Mathematics, Govt. Arts College (Autonomous), Coimbatore 18
  • S. Parvatham Post Graduate and Research Department of Mathematics, Govt. Arts College (Autonomous), Coimbatore 18

DOI:

https://doi.org/10.26713/jims.v9i3.952

Keywords:

Parahyponormal operator, Approximate point spectrum and Joint approximate point spectrum

Abstract

In this paper, we prove some basic properties of \(k\)-quasi-\(^*\)parahyponormal operators and spectrum of class of \(k\)-quasi-\(^*\)parahyponormal operators is continuous. Also, we proved the non zero points of its approximate point spectrum and joint approximate point spectrum are identical.

Downloads

Download data is not yet available.

References

A. Aluthge, On p-hyponormal operators for (0

S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111 – 114, doi:10.2307/2033783.

J.B. Conway and B.B. Morrel, Operators that are points of spectral continuity, Integr. Equ. Oper. Theory 2 (1979), 174 – 198 doi:10.1007/BF01682733.

S.V. Djordjevic, Continuity of the essential spectrum in the class of quasihyponormal operators, Vesnik Math. 50 (1998), 71 – 74, elib.mi.sanu.ac.rs/files/journals/mv/211/mv983402.pdf.

B.P. Duggal, I.H. Jeon and I.H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), 584 – 587 http://dx.doi.org/10.1016/j.jmaa.2010.04.068.

B.P. Duggal, I.H. Jeon and I.H. Kim, On (^*)-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436 (2012), 954 – 962 http://dx.doi.org/10.1016/j.laa.2011.06.002.

T. Furuta, On the class of paranormal operators, Proc. Jpn. Acad. 43 (1967), 594 – 598, https://projecteuclid.org/download/pdf1/euclid.pja/1195521514.

T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).

P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York (1982).

Y.M. Han and A.H. Kim, A note on (^*)-paranormal operators, Integr. Equ. Oper. Theory 49(4) (2004), 435 – 444 doi:10.1007/s00020-002-1217-5.

J.K. Han and H.Y. Lee, Invertible completions of 2*2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119 – 123, www.ams.org/proc/2000-128-01/S0002-9939-99.../S0002-9939-99-04965-5.pdf

I.S. Hwang and W.Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), 151 – 157 doi:10.1007/s002090000128

I.S. Hwang and W.Y. Lee, On the continuity of spectra of Toeplitz operators, Arch. Math. 70 (1998), 66 – 73 doi:10.1007/s000130050166.

M. Mahmoud Kutkut, On the classes of Parahyponormal operator, Jour. Math. Sci. 4(2) (1993), 73 – 88.

S. Mecheri, On a new class of operators and Weyl type theorems, Filomat 27 (2013), 629 – 636, www.doiserbia.nb.rs/ft.aspx?id=0354-51801304629M.

P. Pagacz, On Wold-type decomposition, Linear Algebra Appl. 436 (2012), 3605 – 3071.

J.L. Shen and A. Chen, The spectrum properties of quasi-(^*)-paranormal operators, Chinese Annals of Math. (in Chinese) 34(6) (2013), 663 – 670.

Downloads

Published

2017-10-30
CITATION

How to Cite

Senthilkumar, D., & Parvatham, S. (2017). Spectral Properties of \(k\)-Quasi \(^*\)Parahyponormal Operators. Journal of Informatics and Mathematical Sciences, 9(3), 855–862. https://doi.org/10.26713/jims.v9i3.952

Issue

Section

Research Articles