Fuzzy Stability of Euler-Lagrange Type Cubic Functional Equation: A Fixed Point Approach

Authors

  • K. Ravi Department of Mathematics, Sacred Heart College, Tirupattur 635 601, Tamil Nadu, India
  • R. Murali Department of Mathematics, Sacred Heart College, Tirupattur 635 601, Tamil Nadu, India
  • E. Thandapani Ramanujam Institute of Advanced Study in Mathematics, University of Madras, Chennai 600 005, Tamil Nadu, India

DOI:

https://doi.org/10.26713/jims.v4i1.68

Keywords:

Fuzzy normed space, Cubic functional equation, Generalized Hyers-Ulam stability

Abstract

In this paper, the authors investigate the generalized Hyers-Ulam stability of Euler-Lagrange type Cubic functional equation \begin{align} 2af(x+ay)+2f(ax-y) =(a^3+a)[f(x+y)+f(x-y)]+2(a^4-1)f(y)\end{align} in fuzzy normed space by direct method and fixed point method, where $a$ is fixed integer with $a\neq 0$, $\pm 1$.

Downloads

Download data is not yet available.

Downloads

CITATION

How to Cite

Ravi, K., Murali, R., & Thandapani, E. (2012). Fuzzy Stability of Euler-Lagrange Type Cubic Functional Equation: A Fixed Point Approach. Journal of Informatics and Mathematical Sciences, 4(1), 65–75. https://doi.org/10.26713/jims.v4i1.68

Issue

Section

Research Articles