Eccentric connectivity polynomial and Total eccentricity polynomial of \(NA^n_m\) Nanotube
DOI:
https://doi.org/10.26713/jims.v9i1.521Keywords:
Eccentric connectivity polynomial, Total eccentricity polynomial, NanotubeAbstract
Let \(G\) be a molecular graph with vertex set \(V(G)\) and edge set \(E(G)\). In chemical graph theory, for a molecular graph we have many invariant polynomials and topological indices. The length of a shortest path between two vertices of \(G\) is called distance. In a connected graph \(G\), the eccentricity \(\epsilon(v)\) of vertex \(v\) is the distance between \(v\) and a vertex farthest from \(v\) in \(G\). In this paper, we consider \(NA^n_m\) nanotube and compute eccentric connectivity polynomial and total eccentricity polynomial. Furthermore, we also compute some eccentricity based Zagreb indices of \(NA^n_m\).Downloads
References
M. Alaeiyan, R. Mojarad and J. Asadpour, A new method for computing eccentric connectivity polynomial of an infinite family of linear Polycene parallelogram benzenod, Optoelectronics and Advanced Materials-Rapid Communications 5 (7) (2011), 761 – 763.
J. Asadpour and L. Safikhani, A study of CNC7[n] carbon nanocone by M-eccentric connectivity polynomial, Australian Journal of Basic and Applied Sciences 7 (7) (2013), 883 – 887.
A.R. Ashrafi, M. Ghorbani and M.A. Hossein-Zadeh, The eccentric connectivity polynomial of some graph operations, Serdica J. Computing 5 (2011), 101 – 116.
A.R. Ashrafi, M. Ghorbani and M. Jalali, Eccentric connectivity polynomial of an infinite family of Fullerenes, Optoelectron. Adv. Mater. - Rapid Comm. 3 (2009), 823 – 826.
A.R. Ashrafi and M. Saheli, The eccentric connectivity index of a new class of nanostar dendrimers, Optoelectron. Adv. Mater. - Rapid Comm. 4 (6) (2010), 898 – 899.
M. Bac, J. Horvathova, M. Mokrisova, A. Semanicova and A. Suhanyiova, On topological indices of carbonnanotube network, Can. J. Chem. 93 (10) (2015), 1157 – 1160.
A.R. Bindusree, V. Lokesha and P.S. Ranjini, Eccentric connectivity index and polynomial of some graphs, British J. Math. Comp. Sc. 6 (6) (2015), 457 – 463, doi:10.9734/BJMCS/2015/15137.
N. De, On eccentric connectivity index and polynomial of Thorn graph, Applied Mathematics 3 (2012), 931 – 934, doi:10.4236/am.2012.38139.
N. De, S.M. Nayeem and A. Pal, Bounds for the Modified Eccentric connectivity index, Advanced Modeling and Optimization 16 (1) (2014), 133 – 142.
M. V. Diudea, I. Gutman and J. Lorentz, Molecular Topology, Nova, Huntington (2001).
T. Doslic, M. Saheli and D. Vukicevic, Eccentric connectivity index: external graphs and values, Iranian Journal of Mathematical Chemistry 1 (2) (2010), 45 – 56.
M.R. Farahani, Connective eccentric index of an infinite family of linear polycene parallelogram benzenoid, International Letters of Chemistry, Physics and Astronomy 18 (2014), 57 – 62, doi:10.18052/www.scipress.com/ILCPA.37.57.
M.R. Farahani and M.R. Rajesh Kanna, On multiple Zagreb indices of armchair polyhex nanotubes, Physical Science International Journal 9 (1) (2016), 1 – 5.
M.R. Farahani, Computing the Hyper-Zagreb index of hexagonal nanotubes, Journal of Chemistry and Materials Research 2 (1) (2015), 16 – 18.
M.R. Farahani, On the SD-polynomial and SD-index of an infinite class of "Armchair Polyhex Nanotubes”, International Letters of Chemistry, Physics and Astronomy 12 (2014), 63 – 68, doi:10.18052/www.scipress.com/ILCPA.31.63.
H. Yang, W. Sajjad, A.Q. Baig and M.R. Farahani, The Edge Version of RANDIC, Zagreb, Atom Bond Connectivity and Geometric-Arithmetic Indices of NAPQ Nanotube„ International Journal of Advanced Biotechnology and Research (IJBR) 8 (2) (2017), 1582 – 1589
M.R. Farahani, The generalized Zagreb index of the armchair polyhex nanotube TUAC6[p, q], Global Journal of Chemistry 1 (1) (2015), 33 – 36
M.R. Farahani, The second-connectivity and second-sum-connectivity indices of Armchair Polyhex Nanotubes TUAC6[m,n], International Letters of Chemistry, Physics and Astronomy 11 (1) (2014), 74 – 80, doi:10.18052/www.scipress.com/ILCPA.44.73.
M.R. Farahani, (phi(G, x)) polynomials of armchair polyhex nanotubes TUAC6[p, q], International Letters of Chemistry, Physics and Astronomy 17 (2) (2014), 201 – 206, doi:10.18052/www.scipress.com/ILCPA.36.201.
M.R. Farahani, Computing GA5 index of armchair polyhex nanotube, Le Matematiche 69 (2) (November-December 2014), 69 – 76.
M.R. Farahani, Computing the omega and theta polynomials and their indices of an armchair polyhex nanotubes, Journal of Applied Physical Science International 4 (3) (2015), 160 – 164.
M.R. Farahani, Fifth geometric-arithmetic index of polyhex zigzag TUZC6[p, q] nanotube and nanotori, Journal of Advances in Physics 3 (1) (2013), 191 – 196.
M.R. Farahani, Fourth Atom-Bond Connectivity (ABC4) index of nanostructures, Sci-Afric Journal of Scientific Issues, Research and Essays 2 (12) (December, 2014), 567 – 570.
M.R. Farahani, On the fourth atom-bond connectivity index of armchair polyhex nanotubes, Proceedings of the Romanian Academy Series B Chemistry 15 (1) (2013), 3 – 6.
M.R. Farahani, Some connectivity indices and Zagreb index of polyhex nanotubes, Acta Chim. Slov. 59 (2012), 779 – 783.
R. Farooq and M. Ali Malik, Some eccentricity based topological indices of nanostar dendrimers, Optoelectron. Adv. Mater.-Rapid Comm. 9 (5-6) (2015), 842 – 849.
W. Gao, M. Reza Farahani and M. Kamran Jamil, The eccentricity version of atom-bond connectivity index of linear polycene parallelogram benzenoid ABC5(P(n,n)), Acta Chim. Slov. 63 (2016), in press.
Y. Gao, M.R. Farahani and W. Gao, A neighborhood union condition for fractional (k,n0,m)-critical deleted graphs, Transactions on Combinatorics 6 (1) (2017), 13 – 19.
W. Gao and M.R. Farahani, Computing the reverse eccentric connectivity index for certain family of nanocone and fullerene structures, Journal of Nanotechnology, 2016, Article ID 3129561, 6 pages, doi:10.1155/2016/3129561.
W. Gao and M.R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Applied Mathematics and Nonlinear Sciences 1 (1) (2015), 94 – 117, doi:10.21042/AMNS.2016.1.00009.
W. Gao, L. Shi and M.R. Farahani, Szeged Related Indices of TUAC6[p, q], Journal of Discrete Mathematical Sciences and Cryptography 20 (2) (2017), 553 – 563, doi:10.1080/09720529.2016.1228312.
M. Ghorbani and M.A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (1) (2012), 93 – 100.
S. Gupta, M. Singh and A.K. Madan, Application of graph theory: relationship of eccentric connectivity index and Wiener's index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002), 259 – 268.
I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, total (pi)-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535 – 538, doi:10.1016/0009-2614(72)85099-1.
I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, New York (1986).
S. Hayat and M. Imran, Computation of certain topological indices of nanotubes covered by C5 and C7, J. Comput. Theor. Nanosci. 12 (2015), 533 – 541, doi:10.1166/jctn.2015.3761.
Y. Huo, J.B. Liu, A.Q. Baig, W. Sajjad, M. Rezaei, Z. Foruzanfar and M.R. Farahani, Connective eccentric index of NA nanotube, J. Comput. Theor. Nanosci. 14 (4) (2017), 1832 – 1836, doi:10.1166/jctn.2017.651.
A. Kulandai Therese, Eccentric connectivity index, first and second Zagreb indices of Corona Graph, International Journal of Mathematical, Computational, Physical, Electrical, and Computer Engineering 9 (1) (2015), 71 – 75.
P.S. Ranjini and V. Lokesha, Eccentric connectivity index, hyper and reverse-wiener indices of the subdivision graph, Gen. Math. Notes. 2 (2) (2011), 34 – 46.
M. Rezaei, A.Q. Baig, W. Sajjad and M.R. Farahani, Fourth geometric arithmetic index of (NA^n_m) nanotube, International Journal of Pure and Applied Mathematics 111 (3) (2016), 467 – 477.
M. Saheli and A.R. Ashrafi, The eccentric connectivity index of armchair polyhex nanotubes, Macedonian Journal of Chemistry and Chemical Engineering 29 (1) (2010), 71 – 75.
V. Sharma, R. Goswami and A.K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (2) (1997), 273 – 282, doi:10.1021/ci960049h.
H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17 – 20.
H. Wu, M.R. Farahani, Bo Zhao and W. Gao, The second ABC index and second GA index of TUAC6[p, q], Journal of Computational and Theoretical Nanoscience, in press (2017).
B. Zhou and Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 63 (2010), 181 – 198.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.