\(T_M^n\)-Coherent Modules and \(T_M^n\)-Flat Modules

Authors

  • Farzad Shaveisi Razi University
  • Mostafa Amini Payam e Noor University

DOI:

https://doi.org/10.26713/jims.v9i1.424

Keywords:

Coherent module, Flat module, Tilting module

Abstract

In this paper, with respect to a tilting module \(T\), the notions of \(T_M^n\)-coherence and \(T_M^n\)-flatness are introduced, for every module \(M\) and every nonnegative integer \(n\). Some characterizations of \(T_{M}^{n}\)-coherent modules are proved. We  show that an \(R\)-module \(F\) is \(T_{M}^{n}\)-flat (injective) if and only if \(F\) is \(T_{Rm}^{n}\)-flat (injective), for any \(m\in M\). Also, some sufficient conditions under which any direct product (direct limit) of \(T_{M}^{n}\)-flat (\(T_{M}^{n}\)-injective) modules is \(T_{M}^{n}\)-flat (\(T_{M}^{n}\)-injective) are given. Among other results, \(T_{M}^{n}\)-coherent rings are studied.

Downloads

Download data is not yet available.

Author Biography

Farzad Shaveisi, Razi University

Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah, Iran

References

bibitem{fullerbook} F"Ž. "ŽW"Ž. "ŽAnderson and K"Ž. "ŽR"Ž. "ŽFuller"Ž, "Ž{it Rings and Categories of Modules}"Ž, "ŽNew York"Ž, "ŽSpring-Verlag"Ž, "Ž1992"Ž.

"Žbibitem{qv} S"Ž. "ŽBazzoni"Ž, "Ž{A characterization of $n$-cotilting and"Ž

"Ž$n$-tilting modules}"Ž, "Ž{textit{J"Ž. "ŽAlgebra}}"Ž, "Žtextbf{273}"Ž, "Ž2005"Ž,

"Ž359--372"Ž.

"Žbibitem{E.E} E"Ž. "ŽE"Ž. "ŽEnochs and O"Ž. "ŽM"Ž. "ŽG"Ž. "ŽJenda"Ž, "Ž{it Relative"Ž

"ŽHomological Algebra}"Ž, "ŽWalter de Gruyter"Ž. "ŽBerlin"Ž. "ŽNew York"Ž, "Ž2000"Ž.

"Žbibitem{Glaz 1989} S"Ž. "ŽGlaz"Ž, "Ž{it Commutative Coherent Rings}"Ž, "ŽLect"Ž. "ŽNotes Math"Ž. "Ž1372"Ž, "ŽBerlin"Ž,

"ŽSpringer-Verlag"Ž, "Ž1989"Ž.

"Žbibitem {shaveisicam} M"Ž. "ŽJ"Ž. "ŽNikmehr and F"Ž. "ŽShaveisi"Ž, "ŽRelative $T$-Injective Modules and Relative $T$-Flat Modules"Ž, "Ž{textit{Chin"Ž. "ŽAnn"Ž.

"ŽMath.}}"Ž, "Žtextbf{32}B (4)"Ž, "Ž2011"Ž, "Ž497--506"Ž.

"Žbibitem {seam1} M"Ž. "ŽJ"Ž. "ŽNikmehr and F"Ž. "ŽShaveisi"Ž, "Ž{$T$-Dimension and"Ž

"Ž$(n+frac{1}{2},T)$-projective modules}"Ž, "Ž{textit{Seams"Ž. "ŽBull"Ž.

"ŽMath.}}"Ž, "Žtextbf{36}"Ž, "Ž2012"Ž, "Ž113--123"Ž.

"Žbibitem{enochs} J"Ž. "ŽJ"Ž. "ŽRotman"Ž, "Ž{An Introduction"Ž

"Žto Homological Algebra}"Ž, "ŽAcademic Press"Ž, "ŽNewYork"Ž, "Ž2009"Ž.

"Žbibitem{aejm} F"Ž. "ŽShaveisi"Ž, "ŽM"Ž. "ŽAmini and M"Ž. "ŽH"Ž. "ŽBijanzadeh"Ž, "ŽGorenstein $sigma[T]$-injectivity on $T$-coherent rings"Ž, "Žtextit{Asian-European Journal of Mathematics}"Ž, "Žtextbf{8(4)} (2015)"Ž, "Ž1550083 (1--9)"Ž.

"Žbibitem{qw} J"Ž. "ŽWei"Ž, "Ž{$n$-Star modules and $n$-tilting"Ž

"Žmodules}"Ž, "Ž{textit{J"Ž. "ŽAlgebra}}"Ž, "Žtextbf{283}"Ž, "Ž2005"Ž, "Ž711--722"Ž.

"Žbibitem{W.R} R"Ž. "ŽWisbauer"Ž, "Ž{Cotilting objects and dualities"Ž. "ŽIn"Ž: "ŽCoelho"Ž, "ŽF."Ž, "Že.a"Ž. "ŽRepresentations of"Ž

"ŽAlgebras}"Ž. "ŽProc"Ž. "ŽSao Paulo"Ž. "ŽLNPAMtextbf{ 224}"Ž. "ŽMarcel Dekker"Ž, "Ž2002"Ž, "Ž215-233"Ž.

Downloads

Published

2017-06-09
CITATION

How to Cite

Shaveisi, F., & Amini, M. (2017). \(T_M^n\)-Coherent Modules and \(T_M^n\)-Flat Modules. Journal of Informatics and Mathematical Sciences, 9(1), 101–110. https://doi.org/10.26713/jims.v9i1.424

Issue

Section

Research Articles