\(\eta\)-Einstein \((k,\mu )\)-space Forms

Authors

  • Savithri Shashidhar Department of Mathematics, Bangalore University, Central College Campus, Bengaluru 560 001
  • H. G. Nagaraja Department of Mathematics, Bangalore University, Central College Campus, Bengaluru 560 001

DOI:

https://doi.org/10.26713/jims.v7i2.283

Abstract

In the paper we obtain the scalar curvatures of a \((k,\mu)\)-space form under \(h\)-projective, \(\phi\)-projective semi symmetric and \(h\)-Weyl and \(\phi\)-Weyl semisymmetry conditions.

Downloads

Download data is not yet available.

References

T. Koufogiorgos, Contact Riemannian manifolds with constant $phi$-sectional curvature, Tokyo J. Math. 20 (1) (1997), 55-57.

K. Yano and S. Bochner, Curvature and betti numbers, Annals of Mathematicsstudies 32, prince ton University press, 1953.

D. E. Blair, T. Koufogiorgos and B. J. Papantoaiou, Contact metric manifolds satisfying nullity condition, Israrl J. Math. 91 (1-3) (1995), 189-214.

E. Boeckx, A full classification of contact metric $(k,mu)$- spaces, Illinois J. Math. 44 (1) (2000), 212-219.

S. Tanno, Ricci curvature of contact Riemannian manifolds, Tohoku Math. J., 40 (3) (1988), 441-448.

Downloads

Published

2015-11-30
CITATION

How to Cite

Shashidhar, S., & Nagaraja, H. G. (2015). \(\eta\)-Einstein \((k,\mu )\)-space Forms. Journal of Informatics and Mathematical Sciences, 7(2), 109–120. https://doi.org/10.26713/jims.v7i2.283

Issue

Section

Research Articles