An Action of A Regular Curve on $\mathbb{R}^{3}$ and Matlab Applications

Authors

  • Bulent Karakas Yuzuncu Yil University, Faculty of Economics and Administrative Science, Numerical Methods, Van, 65080
  • Senay Baydas Department of Mathematics, Faculty of Science, Yuzuncu Yil University, Van, 65080

DOI:

https://doi.org/10.26713/jims.v5i3.220

Keywords:

Action set, Normed projection, Regular curve

Abstract

We define an action set of a regular curve not passing origin using a normed projection. If $\alpha(t)$ is a regular curve not passing origin, then the curve $\beta(t)=\frac{\alpha(t)}{\|\alpha(t)\|}$ is on unit sphere. $\beta(t) $ is called normed projection of $\alpha(t)$ \cite{3}. Every point $b(t)\in\beta(t)$ defines an orthogonal matrix using Cayley's Formula. So we define an action set $R_{\alpha }(t)\subset SO(3)$ of $\alpha(t)$. We study in this article some important relations $\alpha(t)$ and $R_{\alpha }(P)$, orbit of point $P\in R^{3}$. At the end we give some applications in Matlab.

Downloads

Download data is not yet available.

References

I. Arslan, H.H. Hacısalihoglu, On the spherical representatives of a curve, Int. J. Contemp. Math. Sciences 4 (34) (2009), 1665-1670.

Ë™I. Arslan Güven and S. Kaya Nurkan, The relation among bishop spherical indicatrix curves, International Mathematical Forum 6 (25) (2011), 1209-1215.

S. Baydas and S. Isleyen, A normed projection mapping on unit sphere, YYU, Journal of Science (2011) (in Press)

R. Encheva and G. Georgiev, Shapes of space curves, Journal for Geometry and Graphics 7 (2) (2003), 145-155.

K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics, McGraw-Hill Book Company, New York, 1987, p. 580.

J.M. McCarthy, An Introduction to Theoretical Kinematics, The MIT Press, Cambridge, 1990.

S. Yılmaz, E. í–zyılmaz and M. Turgut, New spherical indicatrices and their characterizations, An. St. Univ. Ovidius Constanta 18 (2) (2010), 337-354.

Downloads

CITATION

How to Cite

Karakas, B., & Baydas, S. (2013). An Action of A Regular Curve on $\mathbb{R}^{3}$ and Matlab Applications. Journal of Informatics and Mathematical Sciences, 5(3), 133–141. https://doi.org/10.26713/jims.v5i3.220

Issue

Section

Research Articles