Asymptotic Behavior of Solutions of Generalized Nonlinear $\alpha$-difference Equation of Second Order

Authors

  • M. Maria Susai Manuel Department of Science and Humanities, R.M.D. Engineering College, Kavaraipettai 601 206, Tamil Nadu
  • G. Britto Antony Xavier Department of Mathematics, Sacred Heart College, Tirupattur 635 601, Vellore District, Tamil Nadu
  • D. S. Dilip Department of Mathematics, Sacred Heart College, Tirupattur 635 601, Vellore District, Tamil Nadu
  • G. Dominic Babu Department of Mathematics, Sacred Heart College, Tirupattur 635 601, Vellore District, Tamil Nadu

DOI:

https://doi.org/10.26713/jims.v5i2.184

Keywords:

Generalized difference equation, Generalized difference operator, Oscillation and nonoscillation

Abstract

In this paper, the authors discuss the asymptotic behavior of solutions of the generalized nonlinear $\alpha$-difference equation
\begin{equation}
\Delta_{\alpha(\ell)}(p(k)\Delta_{\alpha(\ell)} u(k))+f(k)F(u(k))=g(k),
\end{equation}
$k\in[a,\infty),$ where the functions $p$, $f$, $F$ and $g$ are defined in their domain of definition and $\alpha>1$, $\ell$ is positive real.\ Further, $uF(u)>0$ for $u\neq0$, $p(k)>0$ for all $k\in[a,\infty)$ for some $a\in[0,\infty)$ and for all $0\leq j<\ell$, $R_{a+j,k}\to\infty$, where $R_{t+j,k}=\sum\limits_{r=0}^{\frac{k-\ell-t-j}{\ell}}\frac{1}{p(t+j+r\ell)}$,
$t\in[a,\infty)$ and $ k\in\mathbb{N}_\ell(t+j+\ell)$.

Downloads

Download data is not yet available.

Downloads

CITATION

How to Cite

Manuel, M. M. S., Xavier, G. B. A., Dilip, D. S., & Babu, G. D. (2013). Asymptotic Behavior of Solutions of Generalized Nonlinear $\alpha$-difference Equation of Second Order. Journal of Informatics and Mathematical Sciences, 5(2), 121–130. https://doi.org/10.26713/jims.v5i2.184

Issue

Section

Research Articles