A New Generalization of Gegenbauer Polynomials
DOI:
https://doi.org/10.26713/jims.v13i2.1635Keywords:
MacDonaldfunction, Gegenbauer polynomials, Gamma function, Hermit-Kamp de Friet polynomials, Generating function, Mellin transformAbstract
In this work, the author introduces new generalization of Gegenbauer polynomials of one and two variables by considering new extended gamma function defined by MacDonald function. Certain properties of this new generalized Gegenbauer polynomials like integral formulas, Mellin transform, recurrence relationsand generating function are presented and investigated.
Downloads
References
U. M. Abubakar and S. R. Kabara, A note on a new extended gamma and beta functions and their properties, IOSR Journal of Mathematics 15(5) (2019), 1 – 6, DOI: 10.9790/5728-1505030106.
U. M. Abubakar and S. R. Kabara, Some results on the extension of the extended beta function, IOSR Journal of Mathematics 15(5) (2019), 7 – 12, DOI: 10.9790/5728-1505030712.
U. M. Abubakar, S. R. Kabara, M. L. Lawan and F. A. Idris, A new extension of modified gamma and beta functions, Cankaya University Journal of Science and Engineering 18(1) (2021), 9 – 23, https://dergipark.org.tr/tr/pub/cankujse/issue/61974/777298.
U. M. Abubakar, New generalized beta function associated with the Fox-Wright function, Journal of Fractional Calculus and Application 12(2) (2021), 204 – 227, http://math-frac.org/Journals/JFCA/Vol12(2)_July_2021/Vol12(2)_Papers/Volume12(2)_Paper19_Abstract.html.
U. M. Abubakar, A study of extended beta and associated functions connected to Fox-Wright function, Journal of Fractional Calculus and Applications (Special issue ICMSFC2021) 12(3) (2021), Article number 13, pp. 1-23, http://math-frac.org/Journals/JFCA/Vol12(3)_Feb_2021/Vol12(3)_Papers/Volume12(3)_Paper13_Abstract.html.
U. M. Abubakar and S. Patel, On a new generalized beta function defined by the generalized Wright function and its applications, Malaysian Journal of Computing 6(2) (2021), 852 – 871, DOI: 10.24191/mjoc.v6i2.12018.
A. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypershériques: Polynómes d'Her-mite, Gauthier-Villars, Paris (1926).
A. A. Atash and A. A. Al-Gonah, A new extensions of Gegenbauer polynomials, Electronic Journal of University of Aden for Basic and Applied Sciences 1(2) (2020), 69 – 77, https://ejua.net/index.php/ejua-ba/article/view/19.
C. Cesarano, Integral representations and new generating functions of Chebyshev polynomials, Hecettepe Journal of Mathematics and Statistics 44(3) (2015), 535 – 546, http://www.hjms.hacettepe.edu.tr/uploads/501f983d-b272-48ce-a3cd-629deeaed87c.pdf.
M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, Journal of Computational and Applied Mathematics 55 (1994), 99 – 123, DOI: 10.1016/0377-0427(94)90187-2.
G. Dattoli, S. Lorenzutta and C. Cesarano, From Hermite to Humbert polynomials, Rendiconti dell'Istituto di Matematica dell'Universití di Trieste XXXV (2003), 37 – 48, https://rendiconti.dmi.units.it/volumi/35/03.pdf.
G. Dattoli, H. M. Srivastava and K. Zhukovsky, Operational method and differential equations with applications to initial value, Applied Mathematics and Computation 184 (2007), 979 – 1001, DOI: 10.1016/j.amc.2006.07.001.
A. Erdeyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vols. 1-3, McGraw-Hill, New York (1953).
R. K. Parmar, P. Chopra and R. Paris, On an extension of extended beta and hypergeometric functions, Journal of Classical Analysis 11(2) (2017), 97 – 106, DOI: 10.7153/jca-2017-11-07.
E. D. Rainville, Special Function, McMillan, New York (1960), https://3lib.net/book/443656/8c3d1e.
H. M. Srivastava, G. Rahman and K. S. Nissar, Some extension of the pochhemmer symbol and the associate hypergeometric functions, Iranian Journal of Science and Technology, Transactions A: Science 43 (2019), 2601 – 2606, DOI: 10.1007/s40995-019-00756-8.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.