Multiplicative Connectivity Indices of Tri-Hexagonal Boron Nanotube and Nanotori

Authors

  • G. R. Roshini Department of Mathematics, Nitte Meenakshi Institute of Technology, Bangalore
  • Chandrakala S. B. Department of Mathematics, Nitte Meenakshi Institute of Technology, Bangalore
  • B. Sooryanarayana Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore

DOI:

https://doi.org/10.26713/jims.v11i3-4.1306

Keywords:

Multiplicative connectivity indices, Tri-hexagonal boron nanotube, Tri-hexagonal boron nanotorus, Tri-hexagonal boron-\(\alpha\) nanotorus

Abstract

A topological index is a numeric value that can be used to characterize some property of the graph representing a molecule. In this article, we compute multiplicative connectivity indices namely, multiplicative version of first Zagreb index \((\Pi^*_{1})\), second multiplicative Zagreb index \((\Pi_2)\), first and second multiplicative hyper-Zagreb index \( (H \Pi_{1}, H \Pi_2 ) \), general first and second multiplicative Zagreb index \((M Z^a_1, M Z^a_2)\), multiplicative sum-connectivity index \((X\Pi)\), multiplicative product-connectivity index \((\chi \Pi)\), multiplicative atom-bond connectivity index \((ABC \Pi)\) and multiplicative geometric-arithmetic index \((GA \Pi)\) for tri-hexagonal boron nanotube, tri-hexagonal boron nanotorus and tri-hexagonal boron-\(\alpha\) nanotorus.

Downloads

Download data is not yet available.

References

F. Harary, Graph theory, Narosa Publishing House, New Delhi (1969).

V. R. Kulli, Multiplicative connectivity indices of certain nanotubes, Annals of Pure and Applied Mathematics 12(2) (2016), 169–176, DOI: 10.22457/apam.v12n2a8.

V. R. Kulli, Multiplicative hyper-Zagreb indices and coindices of graphs, International Journal of Pure Algebra 6(7) (2016), 342–347.

V. R. Kulli, B. Stone, S. Wang and B. Wei, Generalized multiplicative indices of polycyclic aromatic hydrocarbons and benzeniod systems, preprint, https://arxiv.org/pdf/1705.01139.pdf.

J. Kunstmann and A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties, Phys. Rev. B 74(3) (2006), 035413, 1–14, DOI: 10.1103/PhysRevB.74.035413.

H. Shaker, I. Nadeem, M. Hussain and A. Naseem, Valency based topological indices of tri-Hexagonal Boron nanotori, MAGNT Research Report 4(3) (2017), 153–159.

R. Todeshine and V. Consonni, New local vertex invariants and descriptors based on functions of vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010), 359–372.

J. Wang, Y. Liu and Y. C. Li, A new class of boron nanotube, Chemphyschem. 17 (2009), 3119–3121, DOI: 10.1002/cphc.200900632.

X. Yang, Y. Ding and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties, Phys. Rev. B 77(4) (2008), 041402 (R), DOI: 10.1103/PhysRevB.77.041402.

Downloads

Published

2019-12-31
CITATION

How to Cite

Roshini, G. R., B., C. S., & Sooryanarayana, B. (2019). Multiplicative Connectivity Indices of Tri-Hexagonal Boron Nanotube and Nanotori. Journal of Informatics and Mathematical Sciences, 11(3-4), 313–322. https://doi.org/10.26713/jims.v11i3-4.1306

Issue

Section

Research Articles