The Generalized \(\alpha\)-Nonexpansive Mappings and Related Convergence Theorems in Hyperbolic Spaces
DOI:
https://doi.org/10.26713/jims.v11i1.1147Keywords:
Fixed point set, Generalized \(\alpha\)-nonexpansive mappings, \(\Delta\)-convergence theorems and hyperbolic spacesAbstract
In this paper, we propose and analyze a generalized \(\alpha\)-nonexpansive mappings on a nonempty subset of a hyperbolic space i.e., \begin{align*} \frac{1}{2}d(x,Tx)\leq d(x,y)\Longrightarrow d(Tx,Ty)\leq \alpha d(y,Tx)+\alpha d(x,Ty)+ (1-2\alpha)d(x,y), \end{align*} and prove \(\Delta\)-convergence theorems and convergence theorems for a generalized \(\alpha\)-nonexpansive mappings in a hyperbolic space.Downloads
References
M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Matematicki Vesnik 66(2) (2014), 223 – 234, http://hdl.handle.net/2263/43663.
R. P. Agarwal, D. O'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Convex Anal. 8(1) (2007), 61 – 79.
K. Aoyama and F. Kohsaka, Fixed point theorem for (alpha)-nonexpansive mappings in Banach spaces, Nonlinear Anal., Theory Methods Appl. 74 (2011), 4387 – 4391, DOI: 10.1016/j.na.2011.03.057.
S. S. Chang, G. Wang, L. Wang, Y. K. Tang and Z. L. Ma, (Delta-)convergence theorems for multivalued nonexpansive mappings in hyperbolic spaces, Appl. Math. Comp. 249 (2014), 535 – 540, DOI: 10.1016/j.amc.2014.10.076.
M. Imdad and S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci. 10 (2016), 131 – 138, DOI: 10.1007/s40096-016-0187-8.
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147 – 150, DOI: 10.1090/S0002-9939-1974-0336469-5.
N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by faster iteration process, arXiv preprint, (2014), arXiv:1402.6530.
A. R. Khan, H. Fukhar-ud-din and M. A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 (2012), ID 54, 12 pages, DOI: 10.1186/1687-1812-2012-54.
W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., Theory Methods Appl. 68(12) (2008), 3689 – 3696, DOI: 10.1016/j.na.2007.04.011.
U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc. 357(1) (2008), 1088 – 1095, DOI: 10.7146/brics.v10i21.21791.
T. Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie-Sk{l}odowska, Sect. A 32 (1978), 79 – 88.
L. Leu¸stean, Nonexpansive iteration in uniformly convex Whyperbolic spaces, in: A. Leizarowitz, B. S. Mordukhovich, I. Shafrir and A. Zaslavski (eds.), Nonlinear Analysis and Optimization I. Nonlinear Analysis. Contemporary Mathematics, Ramat Gan American Mathematical Society, Bar Ilan University, Providence, 513 (2010), 193 – 210.
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506 – 510, DOI: 10.1090/S0002-9939-1953-0054846-3.
A. A. Mebawondu and C. Izuchukwu, Some fixed points properties, strong and (Delta)-convergence results for generalized (alpha)-nonexpansive mappings in hyperbolic spaces, Advances in Fixed Point Theory 8(1) (2018), 1 – 20, http://www.scik.org/index.php/afpt/article/view/3415.
D. R. Sahu, Application of the S-iteration process to constrained minimization problem and split feasibility problems, Fixed Point Theory 12 (2011), 187 – 204, http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html.
H. F. Senter and W. G. Doston, Approximating fixed points of nonexpansive mappings, Proc. Am. Math. Soc. 44(2) (1974), 375 – 380, DOI: 10.1090/S0002-9939-1974-0346608-8.
R. Shukla, R. Pant and M. De la Sen, Generalized (alpha)-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications 2017(2017), ID 4, 16 pages, DOI: 10.1186/s13663-017-0597-9.
C. Suanoom and C. Klin-eam, Fixed point theorems for generalized nonexpansive mappings in hyperbolic spaces, Journal of Fixed Point Theory and Applications 19(4) (2017), 2511 – 2528, DOI: 10.1007/s11784-017-0432-2.
C. Suanoom and C. Klin-eam, Remark on fundamentally nonexpansive mappings in hyperbolic spaces, Bull. Austral J. Nonlinear Sci. Appl. 9 (2016), 1952 – 1956, DOI: 10.22436/jnsa.009.05.01.
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088 – 1095, DOI: 10.1016/j.jmaa.2007.09.023.
W. A. Takahashi, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142 – 149, DOI: 10.2996/kmj/1138846111.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.