A New Approach for the Solution of Fuzzy Initial Value Problems Through Runge-Kutta Method

Authors

  • S. Sindu Devi Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Ramapuram, Chennai 440089
  • K. Ganesan Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Ramapuram, Chennai 440089

DOI:

https://doi.org/10.26713/jims.v12i2.1144

Keywords:

Generalized H-differentiability, Fuzzy derivatives, Fuzzy differential equations, Runge-Kutta method formula

Abstract

In this paper we propose a new approach for the solution of second order fuzzy initial value problem without converting to a system of linear fuzzy differential equations using Runge Kutta Method of fourth order under H-differentiability especially increasing length of support. Numerical examples are provided to show the stability and convergence of the proposed method with error control.

Downloads

Download data is not yet available.

References

Z. A. Ghanaie and M. M. Moghadam, Solving fuzzy differential equations by Runge-Kutta method, The Journal of Mathematics and Computer Science 2(2) (2011), 208 – 221, DOI: 10.22436/jmcs.002.02.01.

G. A. Anastassiou and S. G. Gal, On a fuzzy trigonometric approximation theorem of Weirstrass type, Journal of Fuzzy Mathematics 9(3) (2001), 701 – 708.

B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy number-valued functions with applications to fuzzy differential equation, Fuzzy Sets and Systems 151 (2005), 581 – 599, DOI: 10.1016/j.fss.2004.08.001.

B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability Information Sciences 177 (7), 1648 – 1662, DOI: 10.1016/j.ins.2006.08.021.

S. L. Chang and L. A. Zadeh, On fuzzy mapping and control, IEEE Transactions on Systems, Man and Cybernetics 2 (1972), 30 – 34, DOI: 10.1109/TSMC.1972.5408553.

D. Dubois and H. Prade, Towards fuzzy differential calculus part 3: differential, Fuzzy Sets and Systems 8 (1982), 225 – 233, DOI: 10.1016/S0165-0114(82)80001-8.

B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences 177 (2007), 1648 – 1662, DOI: 10.1016/j.ins.2006.08.021.

F. Rabiei, F. Ismail, A. Ahmadian and S. Salahshour, Numerical solution of second-order fuzzy differential equation using improved Runge-Kutta Nystrom method, Mathematical Problems in Engineering 2013 (2013), Article ID 803462, 10 pages, DOI: 10.1155/2013/803462.

T. Jayakumar, D. Maheskumar and K. Kanagarajan, Numerical solution of fuzzy differential equations by Runge-Kutta method of order five, Applied Mathematical Sciences 6(57-60) (2012), 2989 – 3002, http://m-hikari.com/ams/ams-2012/ams-57-60-2012/maheskumarAMS57-60-2012.pdf.

T. Jayakumar and T. Muthukumar, Numerical method of differential equation by Runge-Kutta method with full fuzzy initial values, MATLAB Journal 1(1) (2018), 100 – 114, https://purkh.com/index.php/mathlab/article/view/7/60.

A. Kandel and W. J. Byatt, Fuzzy process, Fuzzy Sets and Systems 4 (1980), 117 – 152, DOI: 10.1016/0165-0114(80)90032-9.

M. Friedman, M. Ma and A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and System 106 (1999), 35 – 48, DOI: 10.1016/S0165-0114(98)00355-8.

M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications 91 (1983), 552 – 558, DOI: 10.1016/0022-247X(83)90169-5

Downloads

Published

2020-06-30
CITATION

How to Cite

Devi, S. S., & Ganesan, K. (2020). A New Approach for the Solution of Fuzzy Initial Value Problems Through Runge-Kutta Method. Journal of Informatics and Mathematical Sciences, 12(2), 149–157. https://doi.org/10.26713/jims.v12i2.1144

Issue

Section

Research Articles