(ε,δ)-Characteristic Fuzzy Sets Approach to the Ideal Theory of BCK/BCI-Algebras

Authors

  • G. Muhiuddin Department of Mathematics, University of Tabuk, Tabuk 71491
  • Shuaa Aldhafeeri Department of Mathematics, College of Basic Education, Public Authority for Applied Education and Training
  • K. P. Shum Institute of Mathematics, Yunnan University, Kunming 650091

DOI:

https://doi.org/10.26713/jims.v10i4.1130

Keywords:

(ε,δ)-characteristic fuzzy set, (Fuzzy) ideal, (α,β)-fuzzy ideal

Abstract

The notion of (ε,δ)-characteristic fuzzy sets is introduced. Given an ideal F of a BCK/BCI-algebra X, conditions for the (ε,δ)-characteristic fuzzy set in X  to be an (,q)-fuzzy ideal, an (,q)-fuzzy ideal, an (,q)-fuzzy ideal, a (q,q)-fuzzy ideal, a (q,)-fuzzy ideal, a (q,q)-fuzzy ideal and a (q,q)-fuzzy ideal are provided. Using the notions of (α,β)-fuzzy ideal μF(ε,δ), conditions for the F to be an ideal of X are investigated where (α,β) is one of (,q), (,q), (,q), (q,q), (q,q), (q,) and (q,q).

Downloads

References

S. K. Bhakat and P. Das, ((in, in !vee , {rm q}))-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359 – 368, DOI: 10.1016/0165-0114(95)00157-3.

Y. S. Huang, BCI-algebra, Science Press, Beijing (2006).

Y. B. Jun, On ((alpha,beta))-fuzzy ideals of BCK/BCI-algebras, Sci. Math. Jpn. 60(3) (2004), 613 – 617.

Y. B. Jun, On ((alpha,beta))-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42(4) (2005), 703 – 711, DOI: 10.4134/BKMS.2005.42.4.703.

Y. B. Jun, Fuzzy subalgebras of type ((alpha,beta)) in BCK/BCI-algebras, Kyungpook Math. J. 47 (2007), 403 – 410.

J. Meng and Y. B. Jun, BCK-algebra, Kyungmoon Sa Co., Seoul (1994).

G. Muhiuddin and A. M. Al-Roqi, Subalgebras of BCK/BCI-algebras based on ((alpha,beta))-type fuzzy sets, J. Comput. Anal. Appl. 18(6) (2015), 1057 – 1064.

G. Muhiuddin and A. M. Al-roqi, Classifications of ((alpha,beta))-fuzzy ideals in BCK/BCI-algebras, J. Math. Anal. 7(6) (2016), 75 – 82.

G. Muhiuddin and S. Aldhafeeri, Characteristic fuzzy sets and conditional fuzzy subalgebras, J. Comput. Anal. Appl. 25(8) (2018), 1398 – 1409.

P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571 – 599, DOI: 10.1016/0022-247X(80)90048-7.

J. Zhan, Y. B. Jun and B. Davvaz, On ((in, in !vee , {rm q}))-fuzzy ideals of BCI-algebras, Iran. J. Fuzzy Syst. 6(1) (2009), 81 – 94, http://ijfs.usb.ac.ir/article_222.html.

Downloads

Published

2018-12-31
CITATION

How to Cite

Muhiuddin, G., Aldhafeeri, S., & Shum, K. P. (2018). (ε,δ)-Characteristic Fuzzy Sets Approach to the Ideal Theory of BCK/BCI-Algebras. Journal of Informatics and Mathematical Sciences, 10(4), 573–581. https://doi.org/10.26713/jims.v10i4.1130

Issue

Section

Research Article