Synthesis of KZnF\(_{3}\) Phosphors by Co-Precipitation Method
DOI:
https://doi.org/10.26713/jamcnp.v9i1.1962Keywords:
Photoluminescence, Fluorides, Fluoroperovksite, Coprecipitation synthesis, KZnF\({}_{3}\)Abstract
Synthesis of KZnF\({}_{3}\) is rather tedious. Typical problems of fluoride synthesis are faced with more acuteness. Even in wet chemical preparations, use of hygroscopic starting materials like zinc chloride or nitrate presents considerable difficulties. A simple precipitation synthesis of KZnF\({}_{3}\) with aqueous solutions of zinc sulfate and potassium fluoride is described. Precipitation at the room temperature produces the compound profoundly contaminated with hydroxide phase. Phase pure compound is obtained when boiling solutions are mixed. Activators Cerium and europium could be incorporated by adding the corresponding sulfates to zinc sulfate solution during the precipitation. As prepared phosphor exhibited typical Ce\({}^{3+}\) luminescence. For obtaining Eu\({}^{2+}\) luminescence, the phosphor had to be given reducing treatment.
Downloads
References
L.K. Aminov, A.V. Kosach, S.I. Nikitin, N.I. Silkin and R.V. Yusupov, Optical absorption of KZnF3:Tl+ and KMgF3:Tl+ crystals, Journal of Physics: Condensed Matter 13 (2001), 6247 – 6258, DOI: 10.1088/0953-8984/13/28/307.
L.K. Aminov, S.I. Nikitin, N.I. Silkin, A.A. Shakhov and R.V. Yusupov, Photoluminescence of KZnF3:Tl+ and KMgF3:Tl+ crystals, Journal of Physics: Condensed Matter 14 (2002), 13835 – 13856, DOI: 10.1088/0953-8984/14/50/310.
J. Andrh, A. Beltrb, J.A. Igualada, R. Llusar and V. Moliner, Ab initio perturbed ion calculations on Ni2+.KZnF3 and Ni2+.KMgF3. A structural study, Journal of Molecular Structure: THEOCHEM 330(1–3) (1995), 319 – 323, DOI: 10.1016/0166-1280(94)03856-G.
O.A. Anikeenok, Long-range coulomb interaction of electrons of 4f orbitals in impurity centers Yb3+:KZnF3, CsCaF3, and Sm3+:CaF2, Physics of the Solid State 55 (2013), 2304 – 2310, DOI: 10.1134/S1063783413110036.
A.M. Barb, A.S. Gruia and C.N. Avram, Optical energy levels scheme for Co2+ doped in K(Mg,Zn)F3 fluoroperovskites, Physica B: Condensed Matter 482 (2016), 24 – 27, DOI: 10.1016/j.physb.2015.11.011.
Z.T. Chen, E.H. Song, M. Wu, S. Ding, S. Ye and Q.Y. Zhang, Bidirectional energy transfer induced single-band red upconversion emission of Ho3+ in KZnF3:Mn2+,Yb3+,Ho3+ nanocrystals, Journal of Alloys and Compounds 667 (2016), 134 – 140, DOI: 10.1016/j.jallcom.2016.01.132.
G. Cheng, H. Xia, J. Hu, Y. Zhu and B. Chen, Growth of Co2+ ion doped KZnF3 single crystals by Bridgman method, Materials Research Express 5 (2018), 066201, DOI: 10.1088/2053-1591/aac713.
A.H. Cooke, D.A. Jones, J.F.A. Silva and M.R. Weils, Ferromagnetism in lithium holmium fluoride-LiHoF4. I. Magnetic measurements, Journal of Physics C: Solid State Physics 8(23) (1975), 4083 – 4088, DOI: 10.1088/0022-3719/8/23/021.
K. Di, X. Li, X. Jing, S. Yao and J. Yan, Energy transfer and luminescence properties of KZnF3: Ln3+ (Ln3+ = Eu3+, Tb3+, Eu3+/Tb3+, Eu3+/Tb3+/Tm3+) phosphors, Journal of Alloys and Compounds 661 (2016), 435 – 440, DOI: 10.1016/j.jallcom.2015.11.197.
P. Dorenbos, R. Visser, C.W.E. van Eijk, J. Valbis and N.M. Khaidukov, Photon yields and decay times of cross luminescence in ionic crystals, IEEE Transactions on Nuclear Science 39(4) (1992), 506 – 510, DOI: 10.1109/23.159656.
P. Dorenbos, Relation between Eu2+ and Ce3+ f leftrightarrow d-transition energies in inorganic compounds, Journal of Physics: Condensed Matter 15 (2003), 4797 – 4807, DOI: 10.1088/0953-8984/15/27/311.
J.L. Dubicki, M. Riley and R.E. Krausz, Electronic structure of the copper(II) ion doped in cubic KZnF3, The Journal of Chemical Physics 101 (1994), 1930 – 1938, DOI: 10.1063/1.467703.
M. Eibschütz and H.J. Guggenheim, Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni), Solid State Communications 6 (1968), 737 – 739, DOI: 10.1016/0038-1098(68)90576-0.
M.V. Eremin, S.I. Nikitin, N.I. Silkin, S.Yu. Prosvirin and R.V. Yusupov, Microstructure of pair centers of Cr3+-Cr2+ ions in the KZnF3 crystal, Journal of Experimental and Theoretical Physics 87 (1998), 771 – 775, DOI: 10.1134/1.558720.
M.L. Falin, V.A. Latypov, H. Bill and D. Lovy, Electron nuclear double resonance of the cubic Dy3+ center in the KZnF3 single crystal, Applied Magnetic Resonance 14 (1998), 427 – 434, DOI: 10.1007/BF03161852.
R. Francini, U.M. Grassano, L. Landi, A. Scacco, M.D.’Elena, M. Nikl, N. Cechova and N. Zema, Ce3+ luminescent centers of different symmetries in KMgF3 single crystals, Physical Review B 56 (1997), 15109 – 15114, DOI: 10.1103/PhysRevB.56.15109.
A. Gektin, I. Krasovitskaya and N. Shiran, High-temperature thermoluminescence of KMgF3-based crystals, Journal of Luminescence 72-74 (1997), 664 – 666, DOI: 10.1016/S0022-2313(96)00231-1.
R.A. Heaton and C.C. Lin, Electronic energy-band structure of the KMgF3 crystal, Physical Review B 25 (1982), 3538 – 3549, DOI: 10.1103/PhysRevB.25.3538.
T. Hu, H. Lin, F. Lin, Y. Gao, Y. Cheng, J. Xua and Y. Wang, Narrow-band red-emitting KZnF3:Mn4+ fluoroperovskites: insights into electronic/vibronic transition and thermal quenching behavior, Journal of Materials Chemistry C 6(2018), 10845 – 10854, DOI: 10.1039/C8TC04398A.
R. Hua, J. Yu, H. Jiang and C. Shi, Mild solvothermal synthesis and luminescent properties of the complex fluorides KMgF3:Eu and KZnF3:RE (RE = Eu, Ce), Journal of Alloys and Compounds 432 (2007), 253 – 257, DOI: 10.1016/j.jallcom.2006.05.108.
B. Huang, J.M. Hong, X.T. Chen, Z. Yu and X.Z. You, Mild solvothermal synthesis of KZnF3 and KCdF3 nanocrystals, Materials Letters 59(4) (2005), 430 – 433, DOI: 10.1016/j.matlet.2004.09.039.
Z. Huang, M. Yi, H. Gao, Z. Zhang and Y. Mao, Simultaneous size and luminescence control of KZnF3:Yb3+/Er3+ nanoparticles by incorporation of Mn2+, Journal of Materials Science 52 (2017), 2673 – 2683, DOI: 10.1007/s10853-016-0558-4.
W. Künzel, W. Knierim and U. Dürr, CW infrared laseraction of optically pumped Co2+:KZnF3, Optics Communications 36 (1981), 383 – 386, DOI: 10.1016/0030-4018(81)90247-9.
S. Karato, Viscosity and conductivity of the lower mantle; an experimental study on a MgSiO3 perovskite analogue: KZnF3, Physics of the Earth and Planetary Interiors 34(4) (1984), 271 – 274, DOI: 10.1016/0031-9201(84)90068-2.
B.N. Kazakov, A.M. Leushin, G.M. Safiullin and V.F. Bespalov, Optical spectra of octahedral cubic and trigonal Yb3+ impurity centers in KMgF3 and KZnF3 crystals, Physics of the Solid State 40 (1998), 1836 – 1841, DOI: 10.1134/1.1130667.
K.S. Knight, C.L. Bull and P. McIntyre, Low temperature, high pressure thermo-physical and crystallographic properties of KZnF3 perovskite, Materials Chemistry and Physics 199 (2017), 393 – 407, DOI: 10.1016/j.matchemphys.2017.07.025.
X.Y. Kuang, K.W. Zhou and J.Z. Zhao, Theory of exchange interaction for heterodinuclear Mn–Ni in KZnF3:Mn2+–Ni2+ system, Physics Letters A 285(3-4) (2001), 177 – 182, DOI: 10.1016/S0375-9601(01)00250-X.
C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker and C. Rüssel, Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics, Optics Letters 40(22) (2015), 5263 – 5266, DOI: 10.1364/OL.40.005263.
V. Manivannan, P. Parhi and J.W. Kramer, Metathesis synthesis and characterization of complex metal fluoride, KMF3 (M = Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation, Bulletin of Materials Science 31 (2008), 987 – 993, DOI: 10.1007/s12034-008-0155-5.
M. Mortier, I. Gesland and M. Rousseau, Experimental and theoretical study of second-order Raman scattering in BaLiF3, Solid State Communications 89(4)(1994), 369 – 371, DOI: 10.1016/0038-1098(94)90601-7.
S.I. Nikitin, I.N. Gracheva, D.G. Zverev and R.V. Yusupov, Optical studies of the uniaxial stress-induced orbital alignment of the Cr2+ centers in KZnF3 single crystal, The Journal of Chemical Physics 144(23) (2016), 234310, DOI: 10.1063/1.4953798.
J.P. Poiner, J. Peyronneau, J.Y. Gesland and G. Brebec, Viscosity and conductivity of the lower mantle; an experimental study on a MgSiO3 perovskite analogue, KZnF3, Physics of the Earth and Planetary Interiors 32 (1983), 273 – 287, DOI: 10.1016/0031-9201(83)90131-0.
N.L. Rowell and D.J. Lockwood, IR spectrum of Co2+ ion clusters in KZnF3, Infrared Physics 25 (1985), 423 – 427, DOI: 10.1016/0020-0891(85)90117-4.
S. Sarkar, M. Chatti and V. Mahalingam, Highly luminescent colloidal Eu3+-doped KZnF3 nanoparticles for the selective and sensitive detection of CuII ions, Chemistry – A European Journal 20(12) (2014), 3311 – 3316, DOI: 10.1002/chem.201304697.
K. Scheurell and E. Kemnitz, Fluorolytic sol–gel synthesis of nanometal fluorides: Accessing new materials for optical applications, Inorganics 6 (2018), 128 (19 pages), DOI: 10.3390/inorganics6040128.
H.J. Seo, B.K. Moon and T. Tsuboi, Two-photon excitation spectroscopy of 4f7→4f7 transitions of Eu2+ ions doped in a KMgF3 crystal, Physical Review B 62 (2000), 12688 – 12695, DOI: 10.1103/PhysRevB.62.12688.
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A 32 (1976), 751 – 767, DOI: 10.1107/S0567739476001551.
V.S. Singh, C.P. Joshi, T.K.G. Rao and S.V. Moharil, Wet chemical synthesis of KMgF3 phosphors, Journal of Alloys and Compounds 657 (2016), 848 – 854, DOI: 10.1016/j.jallcom.2015.10.176.
E.H. Song, S. Ding, M. Wu, S. Ye, F. Xiao, G.P. Dong and Q.Y. Zhang, Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+,Mn2+, Journal of Materials Chemistry C 1 (2013), 4209 – 4215, DOI: 10.1039/C3TC30450G.
E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou and Q. Zhang, Anomalous NIR luminescence in Mn2+-doped fluoride Perovskite nanocrystals, Advanced Optical Materials 2(7) (2014), 670 – 678, DOI: 10.1002/adom.201400066.
E.H. Song, S. Ding, M. Wu, S. Ye, Z.T. Chen, Y.Y. Ma and Q.Y. Zhang, Tunable white upconversion luminescence from Yb3+-Tm3+-Mn2+ tri-doped perovskite nanocrystals, Optical Materials Express 4 (2014), 1186 – 1196, DOI: 10.1364/OME.4.001186.
N. Tyagi, P.S. Kumar and R. Nagarajan, Room temperature optical absorption and intrinsic photoluminescence in KZnF3, Chemical Physics Letters 494(4-6) (2010), 284 – 286, DOI: 10.1016/j.cplett.2010.06.035.
X. Wang, Y. Chu, Z. Yang, K. Tian, W. Li, S. Wang, S. Jia, G. Farrell, G. Brambilla and P. Wang, Broadband multicolor upconversion from Yb3+-Mn2+ codoped fluorosilicate glasses and transparent glass ceramics, Optics Letters 43(20) (2018), 5013 – 5016, DOI: 10.1364/OL.43.005013.
M. Wu, X.F. Jiang, E.H. Song, J. Su, Z.T. Chen, W.B. Dai, S. Ye and Q.Y. Zhang, Tailoring the upconversion of ABF3:Yb3+/Er3+ through Mn2+ doping, Journal of Materials Chemistry C 4 (2016), 9598 – 9607, DOI: 10.1039/C6TC02982E.
S.Y. Wu, Z.H. Zhang, L.H. Wei, H. Wang and Y.X. Hu, Theoretical investigations of the hyperfine interactions for Co2+ in the fluoroperovskites, Chemical Physics 348(1-3) (2008), 199 – 202, DOI: 10.1016/j.chemphys.2008.03.003.
H. Xu, F. Hong, Z. Chen, S. Nan, Y. Wang, G. Liu, C. Song, X. Dong, W. Yu and J. Wang, Green route, room-temperature synthesis and luminescence properties of a non-rare-earth doping Zn2+ based narrow-band red phosphor for WLEDs, Journal of Luminescence 216 (2019), 116695, DOI: 10.1016/j.jlumin.2019.116695.
C. Zhao, S. Feng, Z. Chao, C. Shi, R. Xu and J. Ni, Hydrothermal synthesis of the complex fluorides LiBaF3 and KMgF3 with perovskite structures under mild conditions, Chemical Communications 14 (1996), 1641 – 1642, DOI: 10.1039/CC9960001641.
Y.R. Zhao, X.Y. Kuang, C. Lu, M.L. Duan and B.B. Zheng, Structural, spectral characterization and electron paramagnetic resonance studies of Ni2+ ions in various compounds: KZnF3, CdCl2, CdBr2 and CsMgI3, Molecular Physics 107(2)(2009), 133 – 141, DOI: 10.1080/00268970902724914.
Q. Zhou, H.-Y. Wu, X.-X. Wu and W.-C. Zheng, Tetragonal distortions of some tetragonal Cr3+ centers in fluoroperovskite ABF3 crystals, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 64(4) (2006), 945 – 948, DOI: 10.1016/j.saa.2005.09.002.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.