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Abstract. Climate change has been consistently observed over the past decades to be associated
with changes and/or modifications of components of the hydrological systems. Observational records
and global and regional climate projections indicate that both surface-water and groundwater
resources are vulnerable to climate change and variability. Thus, understanding the impacts of
climate change and variability on groundwater systems is integral to better planning and efficient
management of groundwater resources. However, assessing and predicting the effects of climate
change on groundwater systems is relatively difficult due to the uncertainties associated with the
spatial and temporal prediction of future climates. This review provides an overview of the key
components of groundwater hydrology in relation to climate change. The effects of changes in climate
on groundwater in soil, deep vadose and saturated zones are assessed. The responses of groundwater
recharge, discharge, quality and changes in storage to climate change are assessed on inter-annual to
multi-decadal or longer geologic time scales.
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1. Introduction
Groundwater may be regarded as all forms of water in the subsurface; this includes water in the
soil root zone (soil moisture), deeper vadose zone and saturated zone (confined and unconfined
aquifers). Groundwater, one of the most important natural resources globally, provides much of
the public and domestic water supply; most rural population around the world obtain potable
water from domestic (private) wells, usually for drinking, cooking and washing, particularly in
areas where surface-water is either scarce or contaminated. Many terrestrial processes including
hydrologic processes are controlled by climate. Thus, changes in climate, which occurs in space
and on all time scales, will results to changes and variability in Earth’s processes (Velasco et al.
[88]). Climate change may results from the influence of natural processes and anthropogenic
activities on terrestrial climates and hydrologic cycle (IPCC [51]; Dragoni and Sukhija [25];
Aizebeokhai [7]). Hydrologic cycle is linked with changes in atmospheric temperature and
radiation balance. Global warming has been consistently associated with changes in components
of the hydrologic cycle such as increasing evapotranspiration, changes in atmospheric water
vapour, changing precipitation patterns, etc. (Bates et al. [11]; IPCC [50], Jimenez Cisneros
et al. [53]). Such changes will influence subsurface hydrologic dynamics and cause changes
in groundwater quality, recharge, discharge and storage in many aquifers (Green et al. [37];
Aizebeokhai [6]).

Understanding the impacts of climate change on the complex processes influencing the
availability and sustainability of surface-water and groundwater resources is crucial (Dragoni
and Sukhija [25]). The effects of climate change on surface-water resources are well recognized;
studies of climate change and climate projections indicate that freshwater resources are
vulnerable. The availability and sustainability of groundwater in many aquifers is threatened
due to depletion of the resource resulting from human and climatic stresses (Alley et al. [5];
Bovolo et al. [12]; Green et al. [38]). The vulnerability of groundwater to climate change
has not been adequately studied. Understanding the potential impacts of climate change on
groundwater resource availability and sustainability is required for efficient management of
the resource. Climate change may directly or indirectly affect groundwater systems in many
ways; the magnitude and direction of the changes may be difficult to quantify due to associated
uncertainty at all stages of the assessment process (Dettinger and Earman [23]; Kundezwicz et
al. [57]). This review presents an overview of the key components of groundwater hydrology
in relation to changes climate. The responses and vulnerability of groundwater systems to
projected climates are assessed. The potential impacts of climate change on recharge and
discharge as well as groundwater storage and quality are evaluated. The essence of this review
is to draw greater attention to the vulnerability of groundwater systems to climate change.

2. Global Climate Projections

Greenhouse gasses are the major driver of much of the contemporary global and regional climate
change; the concentration of CO2 in the atmosphere is the primary indicator of greenhouse
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gases and thus, the primary regulator of climate change (Green et al. [38]; IPCC [50], Jiménez
Cisneros et al. [53]). Climate models are used for studying climatic behaviour in response to
increasing concentration of green house gases in the atmosphere. Climate models range from
simple climate models (SCMs) of the energy balance type to earth system models of intermediate
complexity (EMICs) to comprehensive three-dimensional (3D) general circulation models or
global climate models (GCMs). GCMs are generally considered as the most sophisticated and
reliable climate models for simulating current global climate and predicting future climate
scenarios (IPCC [51]; Green et al. [50]). However, the inherent uncertainties in climate models
make the outputs at best a rough approximation under various assumptions of green house
gases emissions (Zhang et al. [96]; Schneider [77]). Climate projections are required to quantify
the potential effects of climate change and variability on groundwater systems.

Climate change projections for the 21st century are consistent in indicating significant
global warming due to rising air temperature and alterations in frequency and intensity of
precipitation (Mearns et al. [64], Aizebeokhai [7]; IPCC [50], Jiménez Cisneros et al. [53]).
Climate projections for the 21st century include increased warming in high latitudes than in
the tropics; increasing precipitation in high latitudes and parts of the tropics; and decreasing
precipitation in some subtropical and lower mid-latitude regions. Increasing air temperature
will result to more evapotranspiration and uneven distribution of precipitation, both in timing,
frequency and intensity; increasing global average temperature will results to rise in sea level.
The changes in climate will have significant impact on hydrological cycle and thus surface-water
and groundwater resources (Gurdak et al. [39]; Vicente-Serrano et al. [89]; IPCC [50], Jiménez
Cisneros et al. [53]).

3. Climate Change and Groundwater Hydrology

The understanding of the potential effects of climate change on surface-water resources has
greatly improved; only few studies have focused on climate induced changes in groundwater
resources. Groundwater systems may be directly or indirectly affected by climate induced
changes on surface-water and precipitation. The direct impacts include groundwater responses
to changes in temperature and precipitation due to increasing concentration of greenhouse
gases (Figure 1). The indirect impacts arise from changes in land use and anthropogenic
activities, surface-water supplies, and increasing demand for water due to increasing population.
Climate change will affect various components of the global hydrologic cycle in space, time, and
frequency domains (Milly et al. [66]; Bates et al. [11]; Aizebeokhai [6]; Toure et al. [85]). Changes
in atmospheric and surface components of the hydrologic cycle will likely cause changes in the
subsurface components of the hydrologic cycle (Van Dijck et al. [86]). However, the potential
impacts of climate change on groundwater systems are poorly understood due to the complex
relation that exists between groundwater and climate variables (Green et al. [37]; [38]; Earman
and Dettinger [26]).
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Figure 1. A conceptual relations between climate variables and groundwater hydrology (Earman and
Dettinger [26])

Anthropogenic activities including groundwater abstraction resulting to decline in storage,
and the capture of natural discharge are often on the same time scale as some climate change.
Thus, distinguishing between anthropogenic and climate induced changes in groundwater
systems is often difficult. For example, the magnitude and phase relation of El Nino-Southern
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation
(AMO) cycles may result in average or extreme climate conditions that may affect precipitation,
drought, infiltration, recharge, discharge, storage and quality of groundwater resources (De
Vita et al. [24]; Velasco et al. [88]). Subsurface hydrological response to climate change may be
characterized on inter-annual to multi-decadal time scales because variability on these time
scales has the most tangible implications for groundwater resource management (Hanson et
al. [45]; Gurdak et al. [40]; IPCC [50], Jiménez Cisneros et al. [53]; Velasco et al. [88]). Climate
variability on these time scales is often the result of ENSO, PDO and AMO, and can have
substantial influence on groundwater systems (Hanson et al. [44]; Kuss and Gurdak [58]).

3.1 Precipitation, Evapotranspiration and Surface-Water
There is a general agreement that anthropogenic activities are contributing greatly to the
natural greenhouse (IPCC [51]; [50], Jiménez Cisneros et al. [53]). The spatial variability of
projected precipitation indicates both positive and negative changes which can affect both
surface-water and groundwater processes. Projected warming trends will significantly affect
global and regional evapotranspiration patterns with direct implications for the sustainability
of surface-water and groundwater resources. There is relatively little agreement on the
direction and magnitude of predicted evapotranspiration patterns (Barnett et al. [9]). Higher
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air temperatures will increase evapotranspiration and reduce runoff and soil moisture. Small
changes in precipitation and/or evapotranspiration may lead to large changes in soil moisture
and recharge in many semi-arid and arid regions (Sandstrom [76]; Earman et al. [27]).
Groundwater recharge is likely to increase with increasing precipitation in some regions.
Also, the proportion of land surface that will experience extreme drought is predicted to increase
especially in the sub-tropics, and mid-latitudes (Bates et al. [11]; Miller et al. [65]). Different
aquifers and different locations within a given aquifer would experience varied climate induced
changes depending on the spatial variability of the hydraulic properties. Many studies indicate
substantial alteration in the hydrologic cycle in snowmelt-dominated regions through seasonal
shifts in stream flow (Cayan et al. [18]; Mote et al. [68]; Barnett et al. [9]; Jiménez Cisneros et
al. [53]). Groundwater use may increase to offset the shortage of surface-water in seasons when
demands for water are typically higher.

3.2 Surface and Subsurface Hydrological Interactions
Climate change has substantial implications for surface-water processes, including surface-
water and groundwater interactions. Climate change will result to less availability of surface-
water and thus increase the need for groundwater development (Chen et al. [19]). Surface-water
storage structures play a vital role in augmenting recharge. Surface-water and groundwater
interactions may be the most vulnerable to climate change in most settings. Most gaining
streams are relatively shallow compared to the aquifer thickness and receive inflows mainly
from the uppermost parts of the aquifers. A decrease in recharge will lower the water-table in
unconfined aquifers and reduce inflow to surface-water bodies. Similarly, increase in recharge
will result to rising groundwater levels and increased inflow to surface-water bodies.

Small but important feedbacks exist between groundwater and atmospheric processes on
decadal and longer time scales (Cohen et al. [21]). The hydrologic sensitivity of watersheds to
climate change depends on feedbacks between groundwater, overland flow, surface-water and
energy balance. The magnitude and seasonality of groundwater feedbacks to surface hydrologic
processes is highly sensitive to climate change (Zhou et al. [97]). Many ecosystems that depend on
hydrological systems are vulnerable to changes in surface-water and groundwater interactions.
Springs, wetlands, riparian and estuary systems, which are responsive to the fluctuations in
flows to and/or through them, will be affected by climate induced changes in precipitation
events and evapotranspiration (Kimmerer [55]). Understanding climate projection is crucial
for groundwater/surface-water resources close to the limits of sustainability. Stream flows
during dry periods can be strongly affected by groundwater withdrawer. Thus, it is important to
accurately understand the links between climate change and the cycles of supply and demand
that drive groundwater recharge and withdrawal. Also, accurate projections of climate change
and simulations of the responses in the water-resources system are required (Hanson and
Dettinger [43]).
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3.3 Soil Moisture and Vadose Zone
Projected climate is expected to have profound effects on soil and vadose zone hydrology.
Soil moisture and temperature are important factors in terrestrial climates, biogeochemical
reactions, and land and atmosphere interactions. Variability in vadose zone hydrology, shallow
water tables, and groundwater resources are affected by soil moisture and temperature (Fan et al.
[31]). Spatial variations in soil moisture influence atmospheric processes, such as the cumulus
convective rainfall. Some soil types such as hydromorphic soils may exhibit higher climate
change feedback potential than well-aerated soils (Jungkunst et al. [54]). Climatic variables that
influence soil moisture include spatiotemporal patterns in precipitation, evapotranspiration
and surface-water conditions. Other factors include land use, soil texture, slope, and other
biological, chemical, and physical characteristics (Jasper et al. [52]; Seneviratne et al. [78]).
Complex interactions between thermal, hydrologic and geochemical processes that can affect
groundwater quantity and quality commonly occur in the vadose zone (Glassley et al. [35]). The
vadose zone of some semi-arid and arid regions has slowly evolving dynamic characteristics
that pose important challenges for long-term understanding of the effects of climate change.

3.4 Saturated Zone
Many aquifers around the world have large storage capacity and are potentially less sensitive to
changes in climate than surface-water bodies. Groundwater can potentially mitigate droughts
and support surface-water in meeting the demand for water particularly in semi-arid and arid
regions. Changes in palaeo-climatic conditions and responses in recharge, discharge and changes
in storage are preserved in the records of groundwater major and trace-elements chemistry,
stable and radio-isotopes composition, and noble gas content (Fan et al. [31]; Edmunds and
Milne [29]; Castro et al. [17]). Other important components of the hydrogeological systems
include groundwater-fed lakes in arid and semi-arid regions, pore-water chemistry of the vadose
zone, and subsurface-thermal regimes (Taniguchi [83]; Miyakoshi et al. [67]; Taniguchi et al.
[83]). Groundwater archives act as low-pass filters and provide low resolution time-series of
reconstructed temperatures and atmospheric-moisture transport patterns (Gasse [33]). More
palaeo-hydrological researches are required to develop chronologies and analyze mechanisms
for water storage and losses in aquifers, obtain quantitative reconstructions of hydrological
cycles, and identify atmospheric-moisture transport patterns at regional and basin scales.

A number of non-climatic forcings such as contamination, reduction in stream flow and
recharge, and lowering of the water table and loss of storage due to withdrawer can affect
groundwater resources. Climate induced changes in groundwater to date are relatively small
compared with non-climate drivers because groundwater systems often respond more slowly
and have substantial temporal lag to climate change than surface-water systems (Hanson et al.
[44]; Gurdak et al. [40]; Aribisa et al. [8]). Persistent and severe dry periods can significantly
alter the hydraulic properties of aquifers. Current vulnerabilities in water resources strongly
correlate with climate variability, due largely to variability in precipitation (Kundzewicz et
al. [57]; Ouysse et al. [72]). Variability in groundwater levels correlate more strongly with
precipitation than with temperature, but temperature is more important in shallow aquifers.
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3.5 Aquifers Recharge
The dynamic processes affecting aquifers recharge are fundamental to the assessment of climate
induced changes in groundwater quality and quantity (Dragoni and Sukhija [25]; Gurdak et
al. [41]; Toure et al. [85]). Groundwater recharge is a sensitive function of climatic factors,
local geology and soil type, topography, vegetation, surface-water hydrology and land use. Any
variation in precipitation, temperature and evapotranspiration will generally affect recharge
(Dragoni and Sukhija [25]; Green et al. [38]). The understanding of the controls on recharge has
improved significantly, but the knowledge of recharge rates and mechanisms is relatively poor.
Excess rainfall or runoff not used or stored in reservoirs ultimately becomes part of the soil
or groundwater systems or flow to oceans. Climate projections are expected to have numerous
effects on recharge rates and mechanisms, which may not necessarily be negative in all aquifers
(Kundzewicz et al. [57]; Holman et al. [48]; Toure et al. [85]); recharge may increase, decrease
or unchanged depending on a number of climate variables. Under projected climate scenarios,
recharge tends to increase in subtropical regions and remains relatively unchanged or reduced
in some regions (Eckhardt and Ulbrich, 2003; Green et al. [37]; Holman et al. [48]).

The spatiotemporal responses of recharge to precipitation variability due to changes in
climate may affect aquifer yield and discharge, and may modify groundwater flow networks
such that gaining streams suddenly become losing streams and groundwater divides change
position (Winter [93]; Dragoni and Sukhija [25]). In permafrost regions, aquifer recharge may
increase in areas of permafrost thaw; long-term stream flow records can indicate the general
trend in groundwater contribution to stream flow due to permafrost thawing (Kitabata et al.
[56]; Walvoord and Striegl [90]; Haldorsen et al. [42]). In some regions, groundwater flow may
contribute more to permafrost degradation than changes in climate; degrading permafrost may
cause lowering of regional groundwater table leading to falling lake stages, shrinking wetlands,
and degenerating grasslands. Soil moisture may decrease with degrading permafrost and thus,
increase the likelihood of desertification in the region (Cheng and Wu [20]). Snow cover and soil
frost will be reduced in some regions leading to increased winter floods, aquifer recharge and
water levels in shallow unconfined aquifers (Okkonen et al. [70]). Climate related parameters
affecting recharge often trigger slope instability and landslide. Variability in precipitation and
air temperature has substantial control on future landslide activities. Changes in recharge,
which directly affect groundwater levels, have implications for slope stability, geomorphology,
and other engineering considerations. Increase in recharge and thus increased groundwater
levels will likely increase slope instability (Soldati et al. [80]).

Since groundwater is a critical component of the global hydrologic cycle, more attention
should be paid to climate change effects on recharge. The necessary tools and data required to
predict recharge responses to projected climate scenarios in most environments are currently
lacking. Recharge response to projected climates in many regions is presently not well known
due to the uncertainties in predicting future responses of recharge to a given climate-change
scenario (Dragoni and Sukhija [25]). The changing conditions of the location and timing of
recharge and associated effects on groundwater supplies are not sufficiently understood under
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projected climate scenarios (Sophocleous [81]; Gurdak et al. [40]). However, there is abundant
evidence that water resources are vulnerable to climate change effects, especially if recharge
conditions change or worsen (Barthel et al. [10]; Novicky et al. [69]). In water stressed regions,
the use of groundwater to offset declining surface-water availability will be hampered by
declining recharge rates (Kundzewicz et al. [57]).

3.6 Groundwater Discharge
Usually, groundwater depletion occurs when rates of recharge are less than rates of discharge
in a given aquifer. Groundwater depletion may results from direct or indirect effects of climate
change and/or anthropogenic activities, such as pumping, land use or urbanization. Changes
in global groundwater discharge have contributed to rise in sea-level during the past century.
Sea-level rise due to global warming and climate change would have been greater if substantial
quantity of water had not been stored in land-surface reservoirs or channelled into aquifers by
irrigation return-flow (Sahagian et al. [74]; Green et al. [38]). Groundwater resources could still
be substantially affected by climate change even if the present pumping rates are not increased
(Loaiciga et al. [60]; Yusoff et al. [95]). Direct or indirect effects of climate related changes in
groundwater discharge include soil degradation, changes in water demand, and changes in
irrigation or land-use practices (Brouyere et al. [14]). The notable increase in groundwater
depletion is consistent with population growth and advances in technology in many regions.
The technological advancement include development of high resolution geophysical techniques
for delineating aquifers and the development of high-capacity well pumps used to meet the
increasing demand for water. Declining base flow that correlates with soil texture has also been
observed in some regions (Wang et al. [91]).

The effects of groundwater discharge often take many years to manifest; thus, there is a
tendency to neglect data collection and analysis required to support informed decisions for
efficient groundwater resource management (Alley [2]; Hsu et al. [49]). Groundwater resources
are usually non-renewable as aquifer discharge usually exceeds recharge, especially in arid and
semi-arid regions. Under wet climate scenarios, runoff will be the most sensitive hydrologic
component, and when combined with the predicted increases in groundwater discharge, may
result in rising groundwater levels and winter precipitation that will increase the risk of flooding
(Croley and Luukkonen [22]; Woldeamlak et al. [94]). Similarly, under dry climate scenarios,
aquifer recharge which will be the most sensitive hydrologic component decreases in all seasons,
resulting to declining groundwater levels (Allen et al. [1]). This may adversely affect aquatic life
in wetlands and riverine ecosystems which rely on groundwater discharge to support base flow
(Woldeamlak et al. [94]).

3.7 Groundwater Flow and Storage
The importance of groundwater storage is critical in successfully dealing with climate related
effects on groundwater resources. Groundwater storage has been and will continue to be used to
modulate the effects of droughts on surface-water resources as surface-water storage will become
more limited due to climate change (Mall et al. [62]; Toure et al. [85]). Under projected climate
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scenarios, groundwater storage will decrease significantly in many regions due to simulated
severe droughts (Toure et al. [85]). This will further threaten access to groundwater resources.
However, some regions may have sufficient and reliable groundwater storage. Groundwater
depletion will likely be compounded by global population growth, which correlates with higher
groundwater abstraction that further threatens groundwater availability and sustainability
(Loaiciga [60]). Population growth and associated increase in the demand for water resources
coupled with reduction in groundwater storage will result to substantial land-subsidence
(Taniguchi et al. [84]). Changes in infiltration rates will also significantly affect groundwater
storage; storage may likely in regions with high rates of infiltration.

The complex nature of natural climate variability, which occurs on multiple time scales,
is often a major obstacle to reliable characterisation of climate change resulting from
anthropogenic activities (Ghil [34]; Aizebeokhai [6]). Anthropogenic effects on aquifers, such as
pumping resulting to loss in storage, are often on the same time scale as some natural climate
variabilities (Hanson et al. [46]; Mayer and Congdon [63]). The natural variability in climate
can have profound effects on surface-hydrologic cycle due to the magnitude and phase relation
that can cause average or extreme climate forcings (Caruso [16]; Hanson and Dettinger [43];
IPCC, [50]; Jiménez Cisneros et al. [53]). Many questions remain with regard to the control of
natural climate forcings on subsurface hydrologic processes and how anthropogenic warming
affects the frequency and magnitude of these forcings (Gurdak et al. [39]). Additional studies on
climate variability may help to advance groundwater resource management practices.

3.8 Groundwater Quality
Most studies of climate change effects on groundwater resources have been focused on recharge,
discharge, changes in storage and the associated processes governing the flow of groundwater.
Relatively few studies have focused on processes affecting groundwater quality. Groundwater
quality depends on the chemical, physical and biological characteristics of the resource; thus, it
responds to changes in climate and associated anthropogenic activities due to the influences
of recharge, discharge, and land use on groundwater systems. Even if climate change does not
cause any significant changes in groundwater quality, changes in the amount of groundwater
entering other water systems will change the quality of groundwater and those of other water
systems (Earman and Dettinger [26]). Groundwater quality assessment is commonly based
on a value specific concept related to specific water-use standards. Groundwater quality has
direct implications for the health standards of drinking-water (Alley [4]). Usually, groundwater
quality is a major limiting factor for its use. The sustainability of water supplies under future
climate scenarios depends on the quantity and quality of groundwater resources as well as the
physical, chemical, biological and hydrogeological characteristics of the aquifers.

The projected variability in precipitation patterns will likely affect the quality of groundwater
under future climate scenarios in many ways (Alley [3]; Dragoni and Sukhija [25]). Changes in
recharge rates, mechanisms and locations will affect contaminant transport, and spatial and
temporal variability in groundwater quality. Since precipitation is chemically dilute, majority
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of the dissolved material in most aquifers are derived from the interactions between rock
formations and groundwater. Climate change may likely alter the amount of time for the
interaction or the chemical conditions during the interaction; this will degrade the quality
of groundwater. Also, the spatiotemporal variability in precipitation patterns will result to
substantial infiltration events. Large, pore-water salt reservoirs in the vadose zone, mainly
chloride and nitrate, will likely be flushed into many aquifers leading to increased groundwater
salinization (Sugita and Nakane [82]; Gurdak et al. [40]). Thus, groundwater quality in many
aquifers may likely deteriorate substantially if these large chemical reservoirs reach the aquifer.

Sea-level rise, spatial and temporal variability in precipitation patterns and
evapotranspiration, which affect recharge and increase groundwater abstraction, will result
to increased saline-water intrusion into fresh groundwater (Sherif and Singh [79]; Ranja et al.
[73]; IPCC [51]; Oude Essink et al. [71]; Jiménez Cisneros et al. [53]). The increasing sea-level
rise will lead to increased groundwater flow towards low-lying inlands areas and decrease
groundwater flow towards the sea (Vandenbohede et al. [87]; Jiménez Cisneros et al. [53]).
Increased recharge in coastal aquifers will lead to increased groundwater flow towards both
low-lying inland areas and the sea. Thus, brackish and saline-water in low-lying areas will be
pushed back and saline-water intrusion may increase in the low lying areas; this will increase
salinization and degrade groundwater quality in most low-lying areas and hence effects its
ecology and drainage systems (Vandenbohede et al. [87]). Over withdrawer of groundwater
combined with increasing dry periods may lead to substantial decline in groundwater quality in
many coastal aquifers (e.g. Lambrakis and Kallergis [59]).

4. Conclusions
Abundant evidence exists that water resources are vulnerable to the effects of climate change.
Climate change effects on surface-water resources are widely recognised but not much is known
about climate change effects on groundwater resources. Subsurface hydrology is intimately
coupled with surface hydrology and atmosphere; the responses of groundwater hydrology to
climate change have been assessed. Contemporary groundwater and climate systems are not
in equilibrium due to the long memory of deep groundwater system with long flow part and
large storage. Changes in climate have implications for groundwater quantity and quality
in many aquifers; the responses of aquifer recharge, discharge and changes in storage to
climate change are assessed on inter-annual to multi-decadal or longer geologic time scales.
Groundwater resources are vulnerable to changes in storage due to variability in precipitation
patterns, evapotranspiration, fluctuations in surface-water and groundwater interactions, and
over withdrawer arising from climate change.

A deeper understanding of the effects of climate change on groundwater resources over
long term is integral for better planning and efficient groundwater management. Information
about climate related effects on groundwater resources is inadequate, especially with respect to
groundwater quality and ecosystems, and socio-economic dimension. Climate induced changes
in hydrological variables and their impacts on groundwater systems are limited by uncertainties
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inherent in the assessment processes which relate to climate change effects on groundwater
recharge, discharge, quality and storage. Current tools to facilitate integrated appraisals of
adaptation and mitigation options across multiple water-dependent sectors are also inadequate.
Thus, more research on the effects of climate change on hydrologic variables and systems are
required to improve the understanding and modelling of climate change at spatial and temporal
scales relevant to decision making. The relation between groundwater quality and climate
change together with the role of groundwater storage in adapting to climate change should
is established. Techniques to predict and control climate change effects on groundwater at
regional and basin scales are required. The tools to effectively quantify climate change effects
on groundwater resources at different spatial and temporal scales are also required. Models
for saline-water intrusion due to rising sea level and ocean encroachment, and salt dissolution
within bedrock formations at regional, sub-regional and basin scales should be developed.
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