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Abstract. In this paper, it expands and generalize several fixed point theorems on multiple spaces
and prove the existence and some operations of fixed points for nonlinear operators over Banach
algebras. Results are extensions, proofs and generalizations of well-known findings from the literature.
These findings represent Das et al. [7] generalized findings.
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1. Introduction
The first fixed point theorem was presented by Brouwer in 1912 [4]. However, S. Banach [1]
is credited for this idea. It is also known as the Banach fixed point theorem. In 1922,
S. Banach [1] developed a fixed point theorem for contraction mapping in entire metric space.
Krasnosel’skii [15] established a fixed point theorem for a sum of two mappings Ŝ and T on
a non-empty closed convex bounded subset of a Banach space χ in 1955. Many academics,
including Vijayaraju [25], Edmunds [10], Nashed and Wong [17], Sehgal and Singh [22], and
others, generalized and expanded the above theorem. Some fixed point theorems for T + Ŝ on a
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Banach space χ were developed by Olga Hadzic in 1982 ([11,12]). Two fixed point theorem for
sum and product of two operators were discussed by Dhage in 2003 [9].

Three Banach spaces χ, γ, z and the projective tensor product χ⊗y γ, γ⊗y z, χ⊗y z are
examined in this paper. Taking into consideration a triplet of mappings T1 : χ⊗y γ → χ,
T2 : γ⊗y z → γ, T3 : z⊗yχ→ z, we create a self-mapping T on χ⊗y γ, γ⊗y z, χ⊗y z. Assume that
A, B and C are three subsets of χ, γ and z respectively and that Ŝ is a self-mapping on A⊗B,
B⊗C, C⊗ A. For T +TŜ+ Ŝ in the subset A⊗B of χ⊗y γ, B⊗C of γ⊗y z, C⊗ A of χ⊗y z, we
get some fixed point theorems. To demonstrate the reliability of the results which we achieved,
whose examples are also provided.

2. Preliminaries
Definition 2.1. Let χ and γ are two normed spaces. A mapping T : χ→ γ is called non-expansive
iff ∥Tm−Tn∥ ≤ ∥m− n∥, ∀ m,n ∈ χ. It is said to be demi-closed, if its graph is sequentially
closed in the product of weak topology on χ, with the norm topology on γ (refer to Mishra [16]).

A mapping T : χ→ γ is called contraction iff

∥Tm−Tn∥ ≤ r∥m−n∥,

where r is a real number with 0≤ r < 1, ∀ m,n ∈ χ.

Definition 2.2 ([4]). Let χ be a Banach space and f be a continuous mapping of χ into itself.
The mapping f is said to be completely continuous, if the image under f of each bounded set of
χ is contained in a compact.

Definition 2.3 ([4]). Let f be completely continuous self-mapping on a Banach space χ. If for
some positive integer p, f p(χ) be bounded, then f has a fixed point.

Definition 2.4 ([4]). Let K be a non-empty, convex and compact subset of a normal space. Any
continuous mapping T : K → K has at least one fixed point.

Definition 2.5 ([1]). Let (χ,d) be a complete metric space, c ∈ (0,1) and T : χ→ χ be a mapping
such that each for m,n ∈ χ, d(Tm,Tn)≤ cd(m,n).
Then T has a unique fixed point α ∈ χ, such that for each m ∈ χ, lim

n→∞Tnm =α.

Projective Tensor Product 2.6 ([1]). Given normed spaces χ and γ, then projective tensor
norm on χ⊗y γ is defined by

∥h∥ = inf
{
Σi∥mi∥−∥ni∥ : h =Σimi ⊗y ni

}
,

where the infimum is taken over all (finite) representation of h.

Definition 2.7. Let A and B be two bounded subsets of the Banach spaces χ and γ, respectively.
A pair of mappings T1 : A⊗B → A, T2 : A⊗B → B is called (k,k′) contraction mapping if:

(i) ∥T1m−T1n∥ ≤ k
U2

∥m−n∥, k
U2

< 1,

(ii) ∥T2m−T2n∥ ≤ k′
U1

∥m−n∥, k′
U1

< 1,

(iii) ∥T1m∥ ≤U1, ∥T2m∥ ≤U2, ∀ m,n ∈ A⊗B, where A⊗B is bounded by U1U2.
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3. Main Results
Theorem 3.1. Let A,B and C are three subsets of χ, γ and z respectively and let T1 : χ⊗y γ→ χ,
T2 : γ⊗y z → γ, T3 : z ⊗y χ → z are three continuous mapping such that T1(A ⊗ B) ⊆ A,
T2(B⊗C) ⊆ B, T3(C ⊗ A) ⊆ C. We define T : χ⊗y γ→ χ⊗y γ by T(s) = T1(s)⊗T2(s), s ∈ χ⊗y γ.
Similarly, can be define for T : γ⊗y z → γ⊗y z, T : z⊗yχ→ z⊗yχ. Let Ŝ is a completely additive
self-mapping on A⊗B, B⊗C, C⊗ A such that Ŝ and T commute on A⊗B, B⊗C, C⊗ A. Let for
every Σiai⊗bi in A⊗B, there exist one and only one solution (Σiai⊗bi)0 in A⊗B of the equation

Σiαi ⊗βi = T(Σiαi ⊗βi)+T(Σiai ⊗bi)+Σiai ⊗bi , (3.1)

where Σiαi ⊗βi ∈ χ⊗y γ.
Then (T +TŜ+ Ŝ) has a fixed point in A⊗B. It is true for B⊗C and C⊗ A.

Proof. Let us define τ : A⊗B → A⊗B by τ(Σiai ⊗bi)= (Σiai ⊗bi)0.
Firstly, we have to show that τ is continuous. Let {Σiain ⊗ bin}n be a sequence in A⊗B such
that Σiain ⊗bin →Σiai ⊗bi as n →∞.

τ(Σiain ⊗bin)= T(Σiain ⊗bin)0 +T(Σiain ⊗bin)+Σiain ⊗bin,

lim
n→∞τ(Σiain ⊗bin)= T( lim

n→∞(Σiain ⊗bin)0)+T( lim
n→∞Σiain ⊗bin)+Σiai ⊗bi

(T is a continuous as T1 and T2)

= T( lim
n→∞τ(Σiain ⊗bin))+T(Σiai ⊗bi)+Σiai ⊗bi .

So, lim
n→∞τ(Σiain ⊗bin) is a solution of the equation (3.1).

Therefore, lim
n→∞τ(Σiain ⊗bin)= (Σiai ⊗bi)0 = τ(Σiai ⊗bi).

So, that τ is continuous.
For m ∈ A⊗B, τm = m0 = T(m0)+T(m)+m, using equation (3.1).
Now, Ŝ(τm)= Ŝ(m0)= T(Ŝ(m0))+T(Ŝ(m))+ Ŝ(m).
Therefore, Ŝ(m0) is a solution of the equation (3.1) for Ŝ(m) in A⊗B.
Hence, Ŝ(m0)= (Ŝ(m))0, i.e., Ŝ(τm)= τ(Ŝm).
Then Ŝ and τ are commute.
Now, we define

K : A⊗B → A⊗B

by, K(m)= Ŝ(m0)= Ŝ(τm), for m ∈ A⊗B.
Since τ is continuous and Ŝ is completely continuous, so the mapping K is completely
continuous. Since A and B are bounded subsets, so A ⊗B is bounded subset of χ⊗y γ. Now,
Kn(A⊗B)= Ŝnτn(A⊗B) is bounded for n ∈ N . So, using Definition 2.3, we get K has fixed point,
say a in A⊗B.
Therefore,

a = K(a)= Ŝτ(a)= τŜ(a)= (Ŝ(a))0 = T((Ŝ(a))0)+T(Ŝ(a))+ Ŝ(a)= T(a)+T(Ŝ(a))+ Ŝ(a).

So, a is a fixed point for T +TŜ+ Ŝ in A⊗B and it is true for B⊗C and C⊗ A.
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Theorem 3.2. Let T1 : χ⊗y γ→ χ, T2 : γ⊗y z → γ, T3 : z⊗yχ→ z are three continuous mapping
and T : χ⊗y γ→ χ⊗y γ be define by T(s)= T1(s)⊗T2(s), s ∈ χ⊗y γ. Similarly, T : γ⊗y z → γ⊗y z,
T : z⊗yχ→ z⊗yχ be define by T(s)= T2(s)⊗T3(s), s ∈ γ⊗y z and T(s)= T3(s)⊗T1(s), respectively.
Let Ŝ is a completely additive self-mapping on χ⊗y γ such that ŜT = TŜ and for some u > 1,
Ŝu(χ⊗y γ) is bounded.
Let for every Σimi ⊗ni in χ⊗y γ, there exist exactly one solution (Σimi ⊗ni)0 in χ⊗y γ, of the
equation

Σiαi ⊗βi = T(Σiαi ⊗βi)+T(Σimi ⊗ni)+Σimi ⊗ni,

where Σiαi ⊗βi ∈ χ⊗y γ.
Then T +TŜ+ Ŝ has a fixed point in χ⊗y γ. It is true for γ⊗y z and z⊗yχ.

Lemma 3.3. Let the pair (T1,T2), (T2,T3), (T3,T1) be defined as (k,k′) contraction, then
the mapping T : A ⊗ B → A ⊗ B defined by T(m) = T1(m)⊗ T2(m), T(m) = T2(m)⊗ T3(m),
T(m)= T3(m)⊗T1(m), m ∈ A⊗B has a fixed point if (k+k′)< 1.

Example 3.4. Let ψ1
i ⊗y d be a subset of i1 ⊗y d bounded by a constant p. We define

T1 : ψ1
i ⊗y d → ψ1

i by T1(αi ⊗mi) = 1/2p.Σi{αinmi}n where αi = {αin}n and T2 : ψ1
i ⊗y d → ψd

by T2(αi ⊗mi)= 1/4.Σi∥αi∥.|mi|, where ψ1
i and ψd are bounded subset of i1 and d, respectively.

Then (T1,T2) is a pair of (k,k′) contraction mapping with (k+k′)< 1. Therefore, the mapping
T : ψ1

i ⊗y d → ψ1
i ⊗y d defined by T(αi ⊗ mi) = 1/8p.Σi{Nαinmi}n where n = ∥αi∥.|mi| has a

unique fixed point in ψ1
i ⊗y d.

Lemma 3.5. Let (T1,T2), (T2,T3), (T3,T1) be a pair of (k,k′) contraction mappings and T
be defined as T : A ⊗ B → A ⊗ B defined by T(m) = T1(m)⊗ T2(m), T(m) = T2(m)⊗ T3(m),
T(m)= T3(m)⊗T1(m). Let Ŝ is a completely additive self-mapping on A⊗B such that ŜT = TŜ.
If (k+k′)< 1, then T +TŜ+ Ŝ has a fixed point in A⊗B.

Theorem 3.6. Let A,B and C be non-empty compact subsets of Banach spaces χ, γ and
z, respectively. Let (T1,T2), (T2,T3), (T3,T1) be a pair of (k,k′) contraction mappings with
(k+ k′) < 1 and mapping T be defined as T : A⊗B → A⊗B defined by T(m) = T1(m)⊗T2(m),
T(m)= T2(m)⊗T3(m), T(m)= T3(m)⊗T1(m). Let Ŝ is a continuous self-mapping on A⊗B such
that Tm+TŜa+ Ŝa ∈ A⊗B for all m,a ∈ A⊗B.
Then T +TŜ+ Ŝ has a fixed point in A⊗B. It is true for B⊗C, C⊗ A.
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