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Abstract. This paper deals with the motion of oblate infinitesimal mass around the triaxial primaries
in the framework of elliptical restricted three body problem. The triaxial primaries are moving around
each other in elliptic orbits about the common barycentre and the oblate infinitesimal is moving in the
neighbourhood of collinear equilibrium points. It is observed that location and stability of the oblate
infinitesimal around the collinear points are affected by the triaxiality of primaries. Furthermore, the
results shown that the behaviour of infinitesimal mass around the collinear points L1 and L2 are
unstable, while the behaviour of infinitesimal mass around L3 is shown stable for some parameters of
triaxiality of primaries.
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1. Introduction
The restricted three body problem has been studied widely by many researchers because of its
applications in the real world problems as compared to the general three body problem in space
dynamics, Celestial mechanics and analytic dynamics. The Elliptical Restricted Three Body
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Problem (ER3BP) model comprises the system consist of two finite bodies, known as primaries,
which moves around their common centre of mass being attracted by the gravitational attraction
to each other. The primaries describe either a circular motion or elliptical motion. If the system
performs motion in a circular path, then it is called a circular restricted three body problem
otherwise it is an elliptical restricted three body problem. The circular restricted three body
problem has been generalized by the introduction of the eccentricity of the orbit, thus improving
its applicability and retaining some useful properties of the circular model suitable to the
elliptical case. Ammar [1], Grebenikov [5], Gyrögyey [6], Kumar and Ishwar [7], Markellos
et al. [8], Moulton [9], Narayan and Kumar [11], Narayan et al. [15,16], Narayan and Singh
[12,13], Singh and Umar [18,19], Szebehely [20,21], Usha and Narayan [22], Zimvoschikov and
Tihai [23] have studied the effect radiation pressure on the motion of the infinitesimal body by
taking one or both the primaries as a source of radiation.

The bodies in celestial model of the problem were considered as spherical, but many celestial
bodies are either oblate spheroids or triaxial or both, and not spherically. For instance, the
Mars, Jupiter, Saturn, Neurons stares, Regulus and white dwarfs are oblate spheroids, whereas
the Moon and Pluto and its Moon Charon are triaxial. This oblateness and triaxiality of
primaries causes perturbation on the system. That is why many researchers have included
these characterisations in their study of ER3BP. The Earth is also considered oblate triaxial as
well.

This inspired many authors to include these characterizations in their study of ER3BP.
The stability of the collinear equilibrium points in the photogravitational/Generalised
photogravitational ER3BP was studied Sahoo and Ishwar [17], Kumar and Ishwar [7], and
Markellos et al. [8]. The linear stability of periodic orbits of the Lagrangian equilibrium points
of the ERTBP, was studied in Moulton [9] based on some value of the mass ratio. The dynamical
properties of the radiation pressure in ER3BP were also analysed and studied Narayan and
Kumar [11], and Narayan et al. [15,16].

There are five equilibrium points in the ER3BP. The equilibrium points are the points
at which the particle has zero velocity and zero acceleration and are very important for
astronautical applications. Three of the equilibrium points are called collinear points as they lie
on the x-axis (axis joining the two primaries) and are denoted by L1, L2, L3. The remaining
two are called Lagrangian points and are denoted by L4, L5.

In the present work, the motion of the oblate infinitesimal mass around the collinear points
under the triaxial primaries has been studied in the frame work of the ER3BP. The study of
motion of infinitesimal around the collinear point is useful for spacecraft mission. These are the
suitable to set permanent observatories of the Sun, the magnetosphere of the Earth links with
the hidden part of the Moon and others (Gomez and Mondelo [4]). In this paper, we have derived
location of collinear points and their stability, when the primaries are oblate triaxial. The study
of the stability of infinitesimal around the collinear points is important as these points can serve
as a possible fuel depot for future space probe in the lunar mission. The numerical calculations
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and the graphs have been plotted using MATLAB software, respectively. The location of the
collinear points and their stability has been analysed for the Jupiter-Earth system.

The present paper is organised as follows: Section 1, which is introduction; Section 2 provides
the equation of motion; Section 3 gives the location of collinear points; Section 4 focuses on the
stability of the different collinear points. The conclusion of the work is drawn in Section 5.

2. Equation of Motion
The differential equation of motion of the oblate infinitesimal mass in the ER3BP under triaxial
primaries in the barycentric, pulsating and rotating, non-dimensional coordinates are derived
in equation. The notations in principle follow Szebehely [20] with some minor modifications in
the notation being done for adapting to the present problem, which is given by Duggad et al. [3]:

x′′−2y′ = 1
1+ ecosv

(
∂Ω

∂x

)
, y′′+2x′ = 1

1+ ecosv

(
∂Ω

∂y

)
, (2.1)

where (′) denotes differentiation with respect to v and Ω is defined as

Ω=
(

x2 + y2

2

)
+ 1

n2

{
1−µ

r1
+ µ

r2
+ (1−µ)[(2σ1 −σ2)+ A4]

2r3
1

− 3(1−µ)[(σ1 −σ2)y2 + A4]
2r5

1

+ µ[(2σ′
1 −σ′

2)+ A4]

2r3
2

− 3µ[(σ′
1 −σ′

2)y2 + A4]

2r5
2

}
. (2.2)

Let

K = 1
n2

{
1−µ

r3
1

+ µ

r3
2
+ 3(1−µ)[(2σ1 −σ2)+ A4]

2r5
1

− 15(1−µ)[(σ1 −σ2)y2 + A4]
2r7

1

+ 3µ[(2σ′
1 −σ′

2)+ A4]

2r5
2

− 15µ[(σ′
1 −σ′

2)y2 + A4]

2r7
2

}
. (2.3)

Then, equation (2.1) can be written as,

x′′−2y′ = 1
1+ ecosv

{
x
[
1−K + 3(1−µ)(σ1 −σ2)

n2r5
1

+ 3µ(σ′
1 −σ′

2)

n2r5
2

]
− µ(1−µ)

n2

[
1
r3

1
− 1

r3
2
+ 3[(2σ1 −σ2)+ A4]

2r5
1

− 3[(2σ′
1 −σ′

2)+ A4]

2r5
2

− 15[(σ1 −σ2)y2 + A4]
2r7

1
+ 15[(σ′

1 −σ′
2)y2 + A4]

2r7
2

]}
,

y′′+2x′ = 1
1+ ecosv

[1−K]y , (2.4)

where

n2 = 1+ 3
2

e2 + 3
2

(2σ1 −σ2)+ 3
2

(2σ′
1 −σ′

2) (2.5)

and

σ1 = a2 +b2

5R2 , σ2 = b2 − c2

5R2 ,

r1 = (x+µ)2 + y2, r2 = (x−1+µ)2 + y2 . (2.6)
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3. Location of Collinear Equilibrium Points
The collinear equilibrium points of the system are the saddle points. The minima of the function
Ω(x, y) occur at the collinear points. Hence, they are obtained as:

∂Ω

∂x
= 0,

∂Ω

∂y
= 0, (3.1)

where Ω is given by equation (2.2). But, the collinear point lie on the x-axis; hence, are given by
the conditions:

∂Ω

∂x
= 0,

∂Ω

∂y
= 0, y= 0. (3.2)

Hence using equation (3.1) and (3.2), we get

f (x)=
[

x− 1
n2

{
(1−µ)(x+µ)

r3
1

+ µ(x−1+µ)
r3

2
+ 3(1−µ)(x+µ)[(2σ1 −σ2)+ A4]

2r5
1

− 3µ(x−1+µ)[(2σ′
1 −σ′

2)+ A4]

2r5
2

}]
= 0. (3.3)

There are three collinear equilibrium points. These are denoted by L1 lying between the bigger
and smaller primary (−µ< x < 1−µ); L2 lying to the right of smaller primary (x > 1−µ) and L3,
lying to the left of the bigger primary (x <−µ).

3.1 Location of L1

To find the solution for L1, substituting x = x2−ρ = 1−µ−ρ, such that r2 = ρ and r1 = 1−ρ into
the equation (3.3) we have:[

1−µ−ρ− 1
n2

{
(1−µ)
(1−ρ)2 − µ

ρ2 + 3(1−µ)[(2σ1 −σ2)+ A4]
2(1−ρ)4 − 3µ[(2σ′

1 −σ′
2)+ A4]

2ρ4

}]
= 0. (3.4)

Now rearranging the terms, and simplifying, we have:

ρ3
{

1− {3+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+3[(2σ1 −σ2)+ A4]}ρ

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

+ {10
3 +3e2 +3(2σ1 −σ2)+3(2σ′

1 −σ′
2)+2[(2σ1 −σ2)+ A4]}ρ2

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

}

= µ

3(1−µ)

[ {1+15[(2σ′
1 −σ′

2)+ A4]}(1−ρ)4

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

]
·
{

1−30[(2σ′
1 −σ′

2)+ A4]ρ+ 45
2

[(2σ′
1 −σ′

2)+ A4]ρ2 − {n2 +6[(2σ′
1 −σ′

2)+ A4]ρ3}
}

. (3.5)

Now, let

µ

3(1−µ)

[ {1+15[(2σ′
1 −σ′

2)+ A4]}

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

] 1
3

=λ .

Then, we have:

ρ3
{

1− {3+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+3[(2σ1 −σ2)+ A4]}ρ

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}
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+ {10
3 +3e2 +3(2σ1 −σ2)+3(2σ′

1 −σ′
2)+2[(2σ1 −σ2)+ A4]}ρ2

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

}
=λ3(1−ρ)4

{
1−30[(2σ′

1 −σ′
2)+ A4]ρ+ 45

2
[(2σ′

1 −σ′
2)+ A4]ρ2 − {n2 +6[(2σ′

1 −σ′
2)+ A4]ρ3}

}
.

(3.6)
Thus, using the series expansion given as:

ρ =λ(1+ c1λ+ c2λ
2 + . . .). (3.7)

The simplified equation can be written as:

ρ =λ

[
1− 1

3

{ {1+6e2 +6(2σ1 −σ2)+6(2σ′
1 −σ′

2)− 5
3 [(2σ1 −σ2)+ A4]+90[(2σ′

1 −σ′
2)+ A4]}

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

}
λ

− 1
9

{ {10+9e2+9(2σ1−σ2)+9(2σ′
1−σ′

2)+6[(2σ1−σ2)+A4]− 855
2 [(2σ′

1−σ′
2)+A4]}

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}2

}
λ2 + . . .

]
.

(3.8)
Hence the solution for L1 is given by:

x = 1−µ−λ
[
1−1

3

{ {1+6e2+6(2σ1−σ2)+6(2σ′
1 −σ′

2)− 5
3 [(2σ1 −σ2)+ A4]+90[(2σ′

1 −σ′
2)+ A4]}

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}

}
λ

− 1
9

{ {10+9e2+9(2σ1−σ2)+9(2σ′
1−σ′

2)+6[(2σ1 −σ2)+ A4]− 855
2 [(2σ′

1 −σ′
2)+ A4]}

{1+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+ 1
2 [(2σ1 −σ2)+ A4]}2

}
λ2 + . . .

]
.

(3.9)

3.2 Location of L2

For finding the location of L2, substituting x = x2 + ρ such that r2 = ρ, r1 = 1+ ρ. Then
substituting, the values in equation (3.3), we have:

n2(1+ρ)5 − (1+ρ)2 − 3
2 [(2σ1 −σ2)+ A4]

(1+ρ)4 = µ

1−µ
[1+

3
2 [(2σ′

1−σ′
2)+A4]

ρ2 −n2ρ3

ρ2

]
. (3.10)

On simplification, we have

ρ3
{

1− {3+2e2 +2(2σ1 −σ2)+2(2σ′
1 −σ′

2)+3[(2σ1 −σ2)+ A4]}ρ

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}

+ {10
3 +7e2 +7(2σ1 −σ2)+7(2σ′

1 −σ′
2)−2[(2σ1 −σ2)+ A4]}ρ2

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}

}

= µ

3(1−µ)
·
[ {1+15[(2σ′

1 −σ′
2)+ A4]}(1−ρ)4

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}

]
·
{

1−30[(2σ′
1 −σ′

2)+ A4]ρ+ 45
2

[(2σ′
1 −σ′

2)+ A4]ρ2 − {n2 +6[(2σ′
1 −σ′

2)+ A4]ρ3}
}

.

(3.11)
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Using the series as in equation (3.7), we have

ρ =λ

[
1− 1

3

{ {1+10e2 +10(2σ1 −σ2)+10(2σ′
1 −σ′

2)−5[(2σ1 −σ2)+ A4]+30[(2σ′
1 −σ′

2)+ A4]}

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}

}
λ

− 1
9

{ {1+ 83
13 e2+ 83

13 (2σ1−σ2)+ 83
13 (2σ′

1−σ′
2)− 23

13 [(2σ1−σ2)+A4]+ 225
26 [(2σ′

1 −σ′
2)+ A4]}

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}2

}
λ2 + . . . .

(3.12)
Hence the solution for L2 is given by:

x = 1−µ−λ
[
1−1

3

{ {1+10e2+10(2σ1−σ2)+10(2σ′
1−σ′

2)−5[(2σ1−σ2)+A4]+30[(2σ′
1−σ′

2)+A4]}

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}

}
λ

− 1
9

{{1+ 83
13 e2+ 83

13 (2σ1−σ2)+ 83
13 (2σ′

1−σ′
2)− 23

13 [(2σ1−σ2)+A4]+ 225
26 [(2σ′

1−σ′
2)+A4]}

{1+3e2 +3(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 1
2 [(2σ1 −σ2)+ A4]}2

}
λ2 + . . .

]
.

(3.13)

3.3 Location of L3

In order to find the solution for L3, substituting x = x1−ρ such that r1 = ρ and r2 = 1+ρ, into
equation (3.3), we have:

µ

1−µ =
[
n2ρ3 −1− 3[(2σ1−σ2)+A4]

ρ2

]
[1+ 3

[
(2σ′

1−σ′
2)+A4

]
2(1+ρ)2 −n2(1+ρ)3]ρ2

. (3.14)

Let ρ = 1+α, and using the elementary algorithm for division up to O(α)4, we have

− µ

1−µ =
{
− 6e2

7
− 6

7
(2σ1 −σ2)− 6

7
(2σ′

1 −σ′
2)+ 12

7
[(2σ1 −σ2)+ A4]

+
(
− 12α

7

){
1− 132e2

84
− 132

84
(2σ1 −σ2)− 132

84
(2σ′

1 −σ′
2)+ 396

84
[(2σ1 −σ2)+ A4]

+ 36
672

[(2σ′
1 −σ′

2)+ A4]
}
+

(
− 12α

7

)2{
1+ 19257e2

2016
+ 19257

2016
(2σ1 −σ2)

+ 19257
2016

(2σ′
1 −σ′

2)− 237
144

[(2σ1 −σ2)+ A4]− 756
8064

[(2σ′
1 −σ′

2)+ A4]
}

+
(
− 12α

7

)3{
− 935

1728
− 104538e2

24192
− 66507

24192
(2σ1 −σ2)− 66507

24192
(2σ′

1 −σ′
2)

+ 36
1728

[(2σ1 −σ2)+ A4]− 105
96768

[(2σ′
1 −σ′

2)+ A4]
}
+O[α]4 + . . .

}
. (3.15)

Now using the method of successive approximations and Lagrange inversion formula Murray
and Dermott [10], and retaining only linear terms in δ,σ1andσ2, we get

ρ = 1−
{
− 7e2

2
− 1

2
(2σ1 −σ2)− 1

2
(2σ′

1 −σ′
2)− [(2σ1 −σ2)+ A4]

}
− 7

12

{
1− 219e2

21
− 219

21
(2σ1 −σ2)− 219

21
(2σ′

1 −σ′
2)− 171

21
[(2σ1 −σ2)+ A4]
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− 36
672

[(2σ′
1 −σ′

2)+ A4]
}(

µ

1−µ
)
− 7

12

{
−1− 9587e2

672
− 9587

672
(2σ1 −σ2)

− 9587
672

(2σ′
1 −σ′

2)+ 5305
336

[(2σ1 −σ2)+ A4]+ 57
224

[(2σ′
1 −σ′

2)+ A4]
}(

µ

1−µ
)2

− 7
12

{
− 2521

1728
− 290013e2

36288
+ 351321

72576
(2σ1 −σ2)+ 351321

72576
(2σ′

1 −σ′
2)

+ 167463
4536

[(2σ1−σ2)+ A4]+121545
290304

[(2σ′
1−σ′

2)+ A4]
}(

µ

1−µ
)3

+O
(
µ

1−µ
)4

+ . . .
}

.

(3.16)
Hence the solution for L3is given as:

x =−µ−
[
1−

{
− 7e2

2
− 1

2
(2σ1 −σ2)− 1

2
(2σ′

1 −σ′
2)− [(2σ1 −σ2)+ A4]

}
− 7

12

{
1− 219e2

21
− 219

21
(2σ1 −σ2)− 219

21
(2σ′

1 −σ′
2)− 171

21
[(2σ1 −σ2)+ A4]

− 36
672

[(2σ′
1 −σ′

2)+ A4]
}(

µ

1−µ
)
− 7

12

{
−1− 9587e2

672
− 9587

672
(2σ1 −σ2)

− 9587
672

(2σ′
1 −σ′

2)+ 5305
336

[(2σ1 −σ2)+ A4]+ 57
224

[(2σ′
1 −σ′

2)+ A4]
}(

µ

1−µ
)2

− 7
12

{
− 2521

1728
− 290013e2

36288
+ 351321

72576
(2σ1 −σ2)+ 351321

72576
(2σ′

1 −σ′
2)

+ 167463
4536

[(2σ1−σ2)+A4]+121545
290304

[(2σ′
1−σ′

2)+A4]
}(

µ

1−µ
)3

+O
(
µ

1−µ
)4

+ . . .
}]

. (3.17)

4. Linear Stability of Collinear Points
The stability of motion of the infinitesimal mass near the collinear equilibrium point is analysed
using following lemma (Bonavito et al. [23]):

Lemma 4.1. At the collinear points:

K ≡
{

1−µ
r3

1
+ µ

r3
2
+ 3(1−µ)[(2σ1 −σ2)+ A4]

2r5
1

− 15(1−µ)[(σ1 −σ2)y2 + A4]
2r7

1

+ 3µ[(2σ′
1 −σ′

2)+ A4]

2r5
2

− 15µ[(σ′
1 −σ′

2)y2 + A4]

2r7
2

}
> 1 . (4.1)

Proof. For an equilibrium points, we have the condition:

x− 1
n2

[
(1−µ)(x+µ)

r3
1

+ µ(x−1+µ)
r3

2
+ 3(1−µ)(x+µ)[(2σ1 −σ2)+ A4]

2r5
1

+ 3µ(x−1+µ)[(2σ′
1 −σ′

2)+ A4]

2r5
2

− 15(1−µ)(x+µ)[(σ1 −σ2)y2 + A4]
2r7

1

− 15µ(x−1+µ)[(σ′
1 −σ′

2)y2 + A4]

2r7
2

]
= 0 . (4.2)
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The condition for a collinear equilibrium points isy= 0, so the above equation can be written as:

x− 1
n2

[
(1−µ)(x+µ)

r3
1

+ µ(x−1+µ)
r3

2
+ 3(1−µ)(x+µ)[(2σ1 −σ2)+ A4]

2r5
1

+ 3µ(x−1+µ)[(2σ′
1 −σ′

2)+ A4]

2r5
2

]
= 0. (4.3)

Rearranging the terms, the above equation (4.3)can be given as:
1
n2

[
(1−µ)(x+µ)

r1
(r1 − r−2

1 )+ µ(x−1+µ)
r2

(r2 − r−2
2 )

+ 3(1−µ)(x+µ)[(2σ1 −σ2)+ A4]
2r1

(r1 − r−4
1 )

+ 3µ(x−1+µ)[(2σ′
1 −σ′

2)+ A4]
2r2

(r2 − r−4
2 )

]
= 0. (4.4)

Next, to prove equation (4.1) we analyse each collinear equilibrium point separately.

4.1 Stability at Collinear Point L1

Now, at the point L1, r1 + r2 = 1, so r1 = x+µ and r2 = x−1−µ, Substituting the values in
equation (4.3) and simplifying using equation (4.3), we have:

1
n2

[{
1−k+ 3

2
(1−µ)[(2σ1 −σ2)+ A4]+ 3

2
µ[(2σ′

1 −σ′
2)+ A4]

}
r1

−µ
{

1− 1
r3

2
+ 3

2
[(2σ′

1 −σ′
2)+ A4]− 3

2
[(2σ′

1 −σ′
2)+ A4]

r5
2

}]
= 0.

Since 1
n2 ̸= 0 and r2 < 1 we have,

k = 1+
[
µ

r1

{
1
r3

2
+ 3

2
[(2σ′

1 −σ′
2)+ A4]+ 3

2
[(2σ′

1 −σ′
2)+ A4]

r5
2

−1
}

+ 3
2

(1−µ)[(2σ1 −σ2)+ A4]+ 3
2
µ[(2σ′

1 −σ′
2)+ A4]

]
. (4.5)

Hence, we have k > 1 for L1, collinear point

4.2 Stability at Collinear Point L2

At L2, r1 − r2 = 1, so r1 = x+µ and r2 = x−1+µ. Inserting the values in equation (4.3), and
using equation (2.3), and proceeding in the same way as for L1, also for collinear point L2, we
have

k = 1+
[
µ

r1

{
1
r3

2
+ 3

2
[(2σ′

1 −σ′
2)+ A4]+ 3

2
[(2σ′

1 −σ′
2)+ A4]

r5
2

−1
}

+ 3
2

(1−µ)[(2σ1 −σ2)+ A4]+ 3
2
µ[(2σ′

1 −σ′
2)+ A4]

]
. (4.6)
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4.3 Stability at Collinear Point L3

At, L3, r1− r2 = 1, so r1 =−x−µ and r2 =−x+1−µ. Proceeding in same manner as in L1 and
L2, substituting values in equation (4.1) and using equation (2.3), we have:

k = 1+
[
µ

r1

{
1− 1

r3
2
+ 3

2
[(2σ′

1 −σ′
2)+ A4]+ 3

2
[(2σ′

1 −σ′
2)+ A4]

r5
2

}
+ 3

2
(1−µ)[(2σ1 −σ2)+ A4]+ 3

2
µ[(2σ′

1 −σ′
2)+ A4]

]
. (4.7)

Hence, for collinear point L3, also k > 1. Thus, for all collinear point L1, L2 and L3, we have
k > 1. This completes the proof of lemma.

Now, for investigating the roots of characteristics equation and analysing the stability of
motion of the infinitesimal mass around the primaries near the collinear point, assuming
that the particle receives a small displacement from the equilibrium position. Then finding
the variational equations of motion by substituting the coordinates of displaced points in the
equation of motion equation (2.1) and expanding by Taylor’s series about the collinear point and
taking only the linear terms, we get the equation as:

ξ′′−2η′ =φ[Ω0
xxξ+Ω0

xyη], η′′+2ξ′ =φ[Ω0
yxξ+Ω0

yyη], (4.8)

where φ = 1
1+ecosυ and (x0, y0) are the coordinates of the collinear points respectively. The

subscript of Ω denotes the second order partial derivatives of Ω with respect to x and y, as it
appears, respectively.

Since, all the collinear points lie on the x-axis, hence y= 0, resulting, Ωxy = 0. Introducing
new variables given by,

x1 = ξ, x2 = η, x3 = dξ
dυ

, x4 = dη
dυ

.

Substituting these values in equation (4.8), the system of equations can be written as:
dxi

dυ
= Pi1x1 +Pi2x2 +Pi3x3 +Pi4x4, i = 1,2,3,4 (4.9)

where

P11 = P12 = P14 = P21 = P22 = P23 = P33 = P44 = 0 ,

P13 = P24 = 1,P34 = 2,P43 =−2

and

P31 =φΩ0
xx , P32 = P42 =φΩ0

xy , P42 =φΩ0
yy ,

where subscript ‘0’ indicates the value evaluated as respective collinear points. As y= 0, hence
we have P31 = P41 = 0 and φ= 1

1+ecosυ . The coefficient of equation (4.9) is 2π periodic function
ofυ. So, considering the averaged system, given by:

dx(0)
i

dυ
= P (0)

i1 x(0)
1 +P (0)

i2 x(0)
2 +P (0)

i3 x(0)
3 +P (0)

i4 x(0)
4 , i = 1,2,3,4, (4.10)

where

P (0)
is = 1

2π

∫ 2π

0
Pis(υ)dυ, i, s = 1,2,3,4.
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Thus, we get:

P0
31 =

1p
1− e2

Ω0
xx , P0

42 =
1p

1− e2
Ω0

yy , (4.11)

where subscript ‘0’ where ever appears, indicates the value of the corresponding collinear point
L1, L2, L3. Thus, the characteristics equation for the system of equation (4.11) can be given as:

λ4 +Qλ2 +R = 0 , (4.12)

where

Q =−(4−P0
31 −P0

42), R = P0
31.P0

42 , (4.13)

The motion of infinitesimal particle will be stable near the collinear point when given a small
displacement and small velocity, the particle oscillates for a considerable time about the point
(Sahoo and Ishwar [17]). That is, the system will be stable if the roots of the characteristics
equation are purely imaginary.

The roots of the characteristics equation (4.12) are given by:

λ2
1,2 =

[
k−2(1− e2)− 3(1−µ)[(2σ1 −σ2)+ A4]

r5
1

− 3µ[(2σ′
1 −σ′

2)+ A4]

r5
2

]
±

[
9k2 −8k− 15(1−µ)k[(2σ1 −σ2)+ A4]

r5
1

− 15µk[(2σ′
1 −σ′

2)+ A4]

r5
2

+ 18(1−µ)[(2σ1 −σ2)+ A4]
r5

1

+
18µ[(2σ′

1−σ′
2)+A4]

r5
2

+8e2{1+ k
2 − 3(1−µ)[(2σ1−σ2)+A4]

2r5
1

− 3µ[(2σ′
1−σ′

2)+A4]
2r5

2
}]

1
2

2
p

1− e2
. (4.14)

Let λ2 = s, i = 1,2, so the above equation (4.14) can be written as:

s1 =
[
k−2(1− e2)− 3(1−µ)[(2σ1 −σ2)+ A4]

r5
1

− 3µ[(2σ′
1 −σ′

2)+ A4]

r5
2

]
+

[
9k2 −8k− 15(1−µ)k[(2σ1 −σ2)+ A4]

r5
1

− 15µk[(2σ′
1 −σ′

2)+ A4]

r5
2

+ 18(1−µ)[(2σ1 −σ2)+ A4]
r5

1

+
18µ[(2σ′

1−σ′
2)+A4]

r5
2

+8e2{1+ k
2 − 3(1−µ)[(2σ1−σ2)+A4]

2r5
1

− 3µ[(2σ′
1−σ′

2)+A4]
2r5

2
}]

1
2

2
p

1− e2
,

s2 =
[
k−2(1− e2)− 3(1−µ)[(2σ1 −σ2)+ A4]

r5
1

− 3µ[(2σ′
1 −σ′

2)+ A4]

r5
2

]
−

[
9k2 −8k

15(1−µ)k[(2σ1 −σ2)+ A4]
r5

1
− 15µk[(2σ′

1 −σ′
2)+ A4]

r5
2

+ 18(1−µ)[(2σ1 −σ2)+ A4]
r5

1
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+
18µ[(2σ′

1−σ′
2)+A4]

r5
2

−8e2{1+ k
2 − 3(1−µ)[(2σ1−σ2)+A4]

2r5
1

− 3µ[(2σ′
1−σ′

2)+A4]
2r5

2

}] 1
2

2
p

1− e2
. (4.15)

As k > 1 for the collinear point we have,[
9k2 −8k− 15(1−µ)k[(2σ1 −σ2)+ A4]

r5
1

− 15µk[(2σ′
1 −σ′

2)+ A4]

r5
2

+ 18(1−µ)[(2σ1 −σ2)+ A4]
r5

1
+ 18µ[(2σ′

1 −σ′
2)+ A4]

r5
2

+8e2
{

1+ k
2
− 3(1−µ)[(2σ1 −σ2)+ A4]

2r5
1

− 3µ[(2σ′
1 −σ′

2)+ A4]

2r5
2

}] 1
2

> 1. (4.16)

Thus, from equation, equation (4.15) and equation (4.16), we have s1 > 0 and s2 < 0. As, s =λ2,
s1 > 0, we have two real roots of opposite sign, and s2 < 0 resulting into two imaginary roots.
Hence, the solution to the equation (4.14) is of the form:

λi = Ci1ep1υ+Ci2ep2υ+Ci3 cos(p3υ−Ci4), i = 1,2, (4.17)

where p1, p2 and p3 are the roots of the equation (4.13). Since, Ci1, Ci2 and Ci3 are real
constant. Since the equation (4.17) contains positive exponential function; a small change in the
initial conditions makes the solution unbounded. Thus, the motion is unstable near a collinear
equilibrium point.

5. Conclusion
The formula derived in the paper can be applied to the Jupiter and the Earth as primaries and
the particle as space craft. So, the system, the mass parameter µ= m2

m1+m2
= 3.00317×10−6, the

eccentricity of the elliptical orbit of the primaries, e = 0.0167. The nature of motion around the
collinear point can be analysed as:

(1) The motion around the point L1 is unstable for all the values of σ1, σ2, σ′
1, σ1 and σ1 as

λ2
1 > 0 and λ2

2 < 0. This can be seen from Figure 1, Figure 2, Figure 3, Figure 4, Figure 5
and Figure 6.

(2) The point L2 also exhibits the instability of motion in its vicinity as k > 1, λ2
1 > 0 and

λ2
2 < 0 for all values of σ1, σ2, σ′

1, σ1 and σ1. This is evident from Figure 7, Figure 8,
Figure 9, Figure 10, Figure 11 and Figure 12.

(3) For L3, the motion appears to be stable for some value of σ1, σ2, σ′
1, σ1 and σ1 because

the values of λ2
1,2 < 0. That is, the roots will be imaginary implying the stability of the

system which is evident from the Figure 13, Figure 14, Figure 15, Figure 16, Figure 17
and Figure 18.

For different values of σ1, σ2, σ′
1, σ1 and σ1 our result is conformity of the result of Narayan

and Usha [14], and Narayan and Singh [12]. The existence and Stability of collinear points of
the ER3BP with different condition has been analysed. The figures are drawn using MATLAB.

Hence we arrived at the conclusion that motion around collinear point L1 and L2 are
unstable, while motion around L3 is conditionally stable for some values of σ1, σ2, σ′

1, σ1

and σ1.
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Figure 1. Correlation of characteristic root λ1
and µ for L1 (A4 = 0.0005, σ1 = 0.0005, σ2 =
0.0002, σ′

1 = 0.00005, σ′
2 = 0.00002, e = 0.0167)

 
 

 

Figure 2. Correlation of characteristic root λ1
and µ for L1 (A4 = 0.0005, σ1 = 0.0, σ2 = 0.00,
σ′

1 = 0.00, σ′
2 = 0.00, e = 0.0)

 
 
  

Figure 3. Correlation of characteristic root λ1
and µ for L1 (A4 = 0.0005, σ1 = 0.0005, σ2 =
0.0002, σ′

1 = 0.0007, σ′
2 = 0.0002, e = 0.0167)

 
 

 

Figure 4. Correlation of characteristic root
λ1 and µ for L1 (A4 = 0.005, σ1 = 0.005, σ2 =
0.002, σ′

1 = 0.007, σ′
2 = 0.002, e = 0.0167)

 
 

 

Figure 5. Correlation of characteristic root λ1
and µ for L1 (A4 = 0.0006, σ1 = 0.00009, σ2 =
0.00001, σ′

1 = 0.0005, σ′
2 = 0.0001, e = 0.0167)

 
 

  

Figure 6. Correlation of characteristic root λ1
and µ for L1 (A4 = 0.0006, σ1 = 0.0005, σ2 =
0.0002, σ′

1 = 0.00008, σ′
2 = 0.00002, e = 0.0167)

Journal of Informatics and Mathematical Sciences, Vol. 14, No. 1, pp. 21–36, 2022



Effects of Triaxiality of Primaries on Existence and Stability of Collinear. . . : S. Dewangan et al. 33

 
 

   

Figure 7. Correlation of characteristic root λ1
and µ for L2 (A4 = 0.0005, σ1 = 0.0005, σ2 =
0.0002, σ′

1 = 0.00005, σ′
2 = 0.00002, e = 0.0167)

 
 

 

Figure 8. Correlation of characteristic root λ1
and µ for L2 (A4 = 0.0005, σ1 = 0.0, σ2 = 0.00,
σ′

1 = 0.00, σ′
2 = 0.00, e = 0.0)

 
 

   

Figure 9. Correlation of characteristic root λ1
and µ for L2 (A4 = 0.0005, σ1 = 0.0005, σ2 =
0.0002, σ′

1 = 0.0007, σ′
2 = 0.0002, e = 0.0167)

 
 

 

Figure 10. Correlation of characteristic root
λ1 and µ for L2 (A4 = 0.005, σ1 = 0.005, σ2 =
0.002, σ′

1 = 0.007, σ′
2 = 0.002, e = 0.0167)

 
 
    

Figure 11. Correlation of characteristic root λ1
and µ for L2 (A4 = 0.0006, σ1 = 0.00009, σ2 =
0.00001, σ′

1 = 0.0005, σ′
2 = 0.0001, e = 0.0167)

 
 

 

Figure 12. Correlation of characteristic root
λ1 and µ for L2 (A4 = 0.0006, σ1 = 0.0005, σ2 =
0.0002, σ′

1 = 0.00008, σ′
2 = 0.00002, e = 0.0167)
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Figure 13. Correlation of characteristic root λ1
and µ for L3 (A4 = 0.0002, σ1 = 0.00005, σ2 =
0.00001, σ′

1 = 0.0005, σ′
2 = 0.0001, e = 0.0167)

 
 

 

Figure 14. Correlation of characteristic root λ1
and µ for L3 (A4 = 0.00002, σ1 = 0.0, σ2 = 0.0,
σ′

1 = 0.0005, σ′
2 = 0.0001, e = 0.0167)

 
 

 

Figure 15. Correlation of characteristic root λ1
and µ for L3 (A4 = 0.00009, σ1 = 0.00007, σ2 =
0.00002, σ′

1 = 0.005, σ′
2 = 0.001, e = 0.0167)

 
 

  

Figure 16. Correlation of characteristic root
λ1 and µ for L3 (A4 = 0.0001, σ1 = 0.0004,
σ2 = 0.0002, σ′

1 = 0.008, σ′
2 = 0.002, e = 0.0167)

 
 

  

Figure 17. Correlation of characteristic root λ1
and µ for L3 (A4 = 0.00009, σ1 = 0.00007, σ2 =
0.00002, σ′

1 = 0.005, σ′
2 = 0.001, e = 0.0167)

 
 

  

Figure 18. Correlation of characteristic root
λ1 and µ for L3 (A4 = 0.0001, σ1 = 0.0004,
σ2 = 0.0002, σ′

1 = 0.008, σ′
2 = 0.002, e = 0.0167)
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