About the Correlation and Physical Foundation of Thermodynamic and Information Entropy: \(\Gamma\)-Phase Space and the Impact to the Outer World

Authors

  • F. B. Rosmej Sorbonne Université, Faculty of Science and Engineering, UMR 7605, case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France; LULI, Ecole Polytechnique, CNRS-CEA, Physique Atomique dans les Plasmas Denses - PAPD, Route de Saclay, F-91128 Palaiseau Cedex, France; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Institute of Laser and Plasma Technologies, Plasma Physics Department, Kashirskoe sh. 31, Moscow 115409, Russia; Moscow Institute of Physics and Technology - MIPT, Institutskii per. 9, Dolgoprudnyi 141700, Russia
  • V. A. Astapenko Moscow Institute of Physics and Technology - MIPT, Institutskii per. 9, Dolgoprudnyi 141700, Russia
  • V. S. Lisitsa National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Institute of Laser and Plasma Technologies, Plasma Physics Department, Kashirskoe sh. 31, Moscow 115409, Russia; Moscow Institute of Physics and Technology - MIPT, Institutskii per. 9, Dolgoprudnyi 141700, Russia 5National Research Center "Kurchatov Institute”, Kurchatov sq.1, Moscow 123182, Russia; Institutskii per. 9, Dolgoprudnyi 141700, Russia
  • V. A. Kurnaev National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Institute of Laser and Plasma Technologies, Plasma Physics Department, Kashirskoe sh. 31, Moscow 115409, Russia

DOI:

https://doi.org/10.26713/jamcnp.v4i1-3.750

Keywords:

Thermodynamics, Statistics, Entropy, Information entropy, \(\Gamma\)-phase space

Abstract

Although the term "Entropy S” has been introduced to thermodynamics by Clausius already in the 19th century and Boltzmann's genius relation \(S = k_B \ln W\) that relates thermodynamics and statistics dates now back to more than a century, it is still controversially discussed up to present days while it became of increasing interest for the study of atoms and ions in dense and complex environments. The introduction of many different terms like, e.g. thermodynamic entropy, statistical entropy, information entropy, Boltzmann entropy, and many other definitions make it very difficult for students (and also for the non-specialized researcher) to understand, what are the common and different properties. It is the purpose of the present paper, to present an entirely physical approach to entropy and to show, that essentially all different terms and definitions have in fact common basic physical foundations. Based on an approach of statistical mechanics and elementary quantum mechanics we explore the phase space properties of N-particle systems and show, that Boltzmann's logarithmic entropy relation can be derived from physical constraints. Based on these considerations we discover that information is not a separate supplementary quantity but impacts on the outer world in the sense of entropy.

Downloads

Download data is not yet available.

References

R. Clausius, íœber verschiedene, für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. (auch Vortrag vor der Zürcher Naturforschenden Gesellschaft), in: Annalen der Physik und Chemie Band 125 (1865), S. 353 – 400.

S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres í développer cette puissance, Bachelier (1824).

L. Carnot (1804), in E. Mendoza (1988), Reflections on the Motive Power of Fire – and other Papers on the Second Law of Thermodynamics by E. Clapeyron and R. Clausius, Dover Publications, New York, ISBN 0-486-44641-7.

A. Sommerfeld, Lehrbuch der Theoretischen Physik Band V: Thermodynamik”, Harri Deutsch (1977).

R. Mayer, Bemerkungen über die Kräfte der unbelebten Nature, Annalen der Chemie und Pharmacie, (ed. Justus von Liebig), Mai 1842.

L. Boltzmann, íœber die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht, in: Sitzungsber. d. k. Akad. der Wissenschaften zu Wien II 76, S. 428 (1877), see also reprint in "Wissenschaftliche Abhandlungen von Ludwig Boltzmann”, Band II., S. 164–223.

M. Planck, íœber das Gesetz der Energieverteilung im Normalspektrum., Ann. Physik 4, 553 (1901).

C. Tsallis, Possible generalizations of Boltzmann-Gibbs statistics, Journal of Statistical Physics 52, 479 (1988).

J.A. Marsh, M.A. Fuentes, L.G. Moyano and C. Tsallis, Influence of global correlations on central limit theorems and entropic extensivity, Physica A 372, 183 (2006).

L. Zunino, F. Olivares and O.A. Rosso, Permutation min-entropy: An improved quantifier for unveiling subtle temporal correlations, Europhysics Letters 109, 10005 (2015).

J.A.S. Lima, R. Silva and A.R. Plastino, Nonextensive Thermostatistics and the H-Theorem, Physical Review Letters 86, 2938 (2001).

R. Hanel and S. Thurner, A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions, Europhysics Letters 93, 20006 (2011).

G. Ecker and W. Weizel, Zustandssumme und effective Ionisierungsspannung eines Atoms im Inneren des Plasmas, Annalen der Physik 6, 126 (1956).

G. Ecker and W. Kröll, Lowering of the ionization energy for a plasma in thermodynamic equilibrium, Physics Fluids 6, 62 (1963).

D.G. Hummer and D. Mihalas, The equation of state for stellar envelopes: an occupation probability formalism for the truncation of internal partition functions, Astr. J. 331, 794 (1988).

F.B. Rosmej, Ionization potential depression in an atomic-solid-plasma picture, Lett. J. Phys. B., to be published (2018).

R.D. Inglis and E. Teller, Ionic depression of series limits in one electron spectra, Astr. Phys. J. 90, 439 (1939).

W. Kohn and C. Majumdar, Continuity between bound and unbound states in a fermi gas, Phys. Rev. 138, A1617 (1965).

G.B. Zimmermann and R.M. Moore, Pressure ionization in laser fusion target simulation, JQSRT 23, 417 (1980).

I. Shimamura and T. Fujimoto, State densities and ionization equilibrium of atoms in dense plasmas, Phys. Rev. A 42, 2346 (1990).

J. Stewart and K. Pyatt, Lowering of ionization potentials in plasmas, Astrophys. J. 144, 1203 (1996).

F.B. Rosmej, K. Bennadji and V.S. Lisitsa, Dense plasmas effects on exchange energy shifts in highly charged ions: an alternative approach for arbitrary perturbation potentials, Physical Review A 84, 032512 (2011).

X. Li and F.B. Rosmej, Quantum number dependent energy level shifts of ions in dense plasmas: a generalized analytical approach, Europhysics Letters 99, 33001 (2012).

O. Ciricosta, S.M. Vinko, H.-K. Chung, B.I. Cho, C.R.D. Brown, T. Burian, J. Chalupsky, K. Engelhorn, R.W. Falcone, C. Graves, V. Hajkova, A. Higginbotham, L. Juha, J. Krzywinski, H.J. Lee, M. Messerschmid, C.D. Murphy, Y. Ping, D.S. Rackstraw, A. Scherz, W. Schlotter, S. Toleikis, J.J. Turner, L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Shu, R.B. Lee, P. Heimann, B. Nagler, J.S. Wark, Direkt Measurements of the Ionization Potential Depression in a Dense Plasma, Phys. Rev. Lett. 109, 065002 (2012).

D.J. Hoarty, P. Allan, S.F. James, C.R.D. Brown, L.M.R. Hobbs, M.P. Hill, J.W.O. Harris, J. Morton, M.G. Brookes, R. Shepherd, J. Dunn, H. Chen, E. Von Marley, P. Beiersdorfer, H.K. Chung, R.W. Lee, G. Brown, J. Emig, Observation of the effect of ionization-potential depression in hot dense plasma, Phys. Rev. Lett. 110, 265003 (2013).

L.B. Fletcher, A.L. Kritcher, A. Pak, T. Ma, T. Döppner, C. Fortmann, L. Divol, O.S. Jones, O.L. Landen, H.A. Scott, J. Vorberger, D.A. Chapman, D.O. Gericke, B.A. Mattern, G.T. Seidler, G. Gregori, R.W. Falcone, S.H. Glenzer, Observations of continuum depression in warm dense matter with X-ray Thomson scattering, Phys. Rev. Lett. 112, 145004 (2014).

C.A. Igelsias, A plea for a reexamination of ionization potential depression measurements, HEDP 12, 5 (2014).

S.-K. Son, R. Thiele, Z. Jurek, B. Ziaja, R. Santra, Quantum-mechanical calculation of ionizationpotential lowering in dense plasmas, Phys. Rev. X 4, 031004 (2014).

R.H. Swendsen, How physicists disagree on the meaning of entropy, American Journal of Physics (Physics Teachers) 79, 342 (2011).

R.H. Swendsen, Gibbs' paradox and the definition of entropy, Entropy 10, 15 (2008).

L.D. Landau and E.M. Lifschitz, Course of theoretical physics, Mechanics volume I, Elsevier, Amsterdam (2005).

A. Sommerfeld,Lehrbuch der Theoretischen Physik Band 1: Mechanik, Harri Deutsch (1977)

H. Goldstein, C.P. Poole Jr. and J.L. Safko, Classical Mechanics, Pearson (2014).

A. Sommerfeld, Atombau und Spektrallinien Band I und Band II.

K. Huang, Statistical Mechanics, John Wiley & Sons, New York (1988).

L. Szillard, íœber die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Zeitschrift für Physik 53 (11), 840 (1929).

J.V. Koski, V.F. Maisi, T. Sagawa and J.P. Pekola, Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon, Phys. Rev. Lett. 113, 030601 (2014).

B.B. Kadomtsev, Dynamics and Information, Physics Uspekhi 37 (5), 425 (1999).

C.E. Shannon, The mathematical theory of communication, Bell System Technical Journal 27, 379 – 423 ; 623 – 656 (1948).

Downloads

Published

2017-12-25
CITATION

How to Cite

Rosmej, F. B., Astapenko, V. A., Lisitsa, V. S., & Kurnaev, V. A. (2017). About the Correlation and Physical Foundation of Thermodynamic and Information Entropy: \(\Gamma\)-Phase Space and the Impact to the Outer World. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 4(1-3), 21–47. https://doi.org/10.26713/jamcnp.v4i1-3.750

Issue

Section

Pedagogical Research Article