Energy Eigenvalues, Dipole Polarizability, Electron Pressure and Effect of Dielectrics on the Confined Hydrogen Atom

Authors

DOI:

https://doi.org/10.26713/jamcnp.v11i1.2918

Keywords:

Atomic properties, Polarizability, Dielectric constant, Finite difference method

Abstract

In this work, we used an efficient computational technique to solve the Schrödinger equation for the confined hydrogen atom (CHA) which is confined inside a hard spherical cavity with impenetrable wall. The wavefunctions, energy eigenvalues, polarizability and pressure have been calculated for different confinement radius. The energy eigenvalues and expectation values obtained are in good agreement with those calculated values obtained by Aquino et al. [2]. The hydrogen atoms under high pressure are real physical systems which can be found inside astrophysical objects.

Downloads

Download data is not yet available.

References

N. Aquino, A. Flores-Riveros and J. F. Rivas-Silva, Shannon and Fisher entropies for a hydrogen atom under soft spherical confinement, Physics Letters A 377(34-36) (2013), 2062 – 2068, DOI: 10.1016/j.physleta.2013.05.048.

N. Aquino, G. Campoy and H. E. Montgomery Jr., Highly accurate solutions for the confined hydrogen atom, International Journal of Quantum Chemistry 107(7) (2007), 1548 – 1558, DOI: 10.1002/qua.21313.

J. P. Connerade and R. Semaoune, Atomic compressibility and reversible insertion of atoms into solids, Journal of Physics B: Atomic, Molecular and Optical Physics 33(17) (2000), 3467, DOI: 10.1088/0953-4075/33/17/323.

P. Cremaschi and J. L. Whitten, Theoretical studies of interstitial hydrogen in titanium, Surface Science 149(1) (1985), 273 – 284, DOI: 10.1016/s0039-6028(85)80027-3.

S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge (2005), DOI: 10.1017/cbo9781139164313.

T. Guillot, D. J. Stevenson, W. B. Hubbard and D. Saumon, The interior of Jupiter, in: Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling and W. B. McKinnon, Cambridge Planetary Science, Vol. 1, Cambridge, UK: Cambridge University Press, pp. 35 – 57, (2004).

R. Helled, G. Mazzola and R. Redmer, Understanding dense hydrogen at planetary conditions, Nature Reviews Physics 2(10) (2020), 562 – 574, DOI: 10.1038/s42254-020-0223-3.

L. G. Jiao, L. R. Zan, Y. Z. Zhang and Y. K. Ho, Benchmark values of Shannon entropy for spherically confined hydrogen atom, International Journal of Quantum Chemistry 117(13) (2017), e25375, DOI: 10.1002/qua.25375.

S. Kang, Q. Liu, H.-Y. Meng and T.-Y. Shi, Hydrogen atom in ellipsoidal cavity, Physics Letters A 360(4-5) (2007), 608 – 614, DOI: 10.1016/j.physleta.2006.08.055.

J. G. Kirkwood, On the theory of dielectric polarization, The Journal of Chemical Physics 4(9) (1936), 592 – 601, DOI: 10.1063/1.1749911.

G. M. Longo, S. Longo and D. Giordano, Confined H(1s) and H(2p) under different geometries, Physica Scripta 90(8) (2015), 085402, DOI: 10.1088/0031-8949/90/8/085402.

A. Michels, J. de Boer and A. Bijl, Remarks concerning molecural interaction and their influence on the polarisability, Physica 4(10) (1937), 981 – 994, DOI: 10.1016/s0031-8914(37)80196-2.

W. S. Nascimento and F. V. Prudente, Shannon entropy: A study of confined hydrogenic-like atoms, Chemical Physics Letters 691 (2018), 401 – 407, DOI: 10.1016/j.cplett.2017.11.048.

T. Pang, An Introduction to Computational Physics, Cambridge University Press, Cambridge (2006), DOI: 10.1017/CBO9780511800870.

S. H. Patil, Hydrogen atom confined to an ellipsoid, Journal of Physics B: Atomic, Molecular and Optical Physics 34(6) (2001), 1049, DOI: 10.1088/0953-4075/34/6/306.

S. H. Patil and Y. P. Varshni, Properties of confined hydrogen and helium atoms, Advances in Quantum Chemistry 57 (2009), 1 – 24, DOI: 10.1016/s0065-3276(09)00605-4.

S. J. C. Salazar, H. G. Laguna, B. Dahiya, V. Prasad and R. P. Sagar, Shannon information entropy sum of the confined hydrogenic atom under the influence of an electric field, The European Physical Journal D 75(4) (2021), 127, DOI: 10.1140/epjd/s10053-021-00143-2.

A. Sarsa and C. L. Sech, Variational Monte Carlo method with Dirichlet boundary conditions: Application to the study of confined systems by impenetrable surfaces with different symmetries, Journal of Chemical Theory and Computation 7(9) (2011), 2786 – 2794, DOI: 10.1021/ct200284q.

S. S. Sastry, Introductory Methods of Numerical Analysis, Prentice-Hall of India Private Limited, New Delhi, xii + 440 pages (2006), URL: http://www.aerostudents.com/courses/applied-numerical-analysis/IntroductoryMethodsOfNumericalAnalysis.pdf.

L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001), 353 – 358, DOI: 10.1038/35104634.

A. Sommerfeld and H. Welker, Künstliche grenzbedingungen beim keplerproblem, Annalen der Physik 424(1-2) (1938), 56 – 65, DOI: 10.1002/andp.19384240109.

D.-H. Wang, J. Zhang, Z.-P. Sun, S.-F. Zhang and G. Zhao, Quantum mechanical effects for a hydrogen atom confined in a dielectric spherical microcavity, Chemical Physics 551 (2021), 111331, DOI: 10.1016/j.chemphys.2021.111331.

Y. Yakar, B. Çakır and A. Özmen, Dipole and quadrupole polarizabilities and oscillator strengths of spherical quantum dot, Chemical Physics 513 (2018), 213 – 220, DOI: 10.1016/j.chemphys.2018.07.049.

Downloads

Published

2024-12-31
CITATION

How to Cite

Maibam, R., & Sharma, A. (2024). Energy Eigenvalues, Dipole Polarizability, Electron Pressure and Effect of Dielectrics on the Confined Hydrogen Atom. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 11(1), 7–22. https://doi.org/10.26713/jamcnp.v11i1.2918

Issue

Section

Research Article