Effect of UV-Light Illumination on Room Temperature ZnO Nanotubes for Ethanol Gas Sensing

Authors

  • B. Ydir LETSMP, Department of Physics, Faculty of Science, Université Ibn Zohr, Agadir 80000
  • O. Boualiouaat LETSMP, Department of Physics, Faculty of Science, Université Ibn Zohr, Agadir 80000
  • H. Lahlou LETSMP, Department of Physics, Faculty of Science, Université Ibn Zohr, Agadir 80000
  • M. Bousseta LETSMP, Department of Physics, Faculty of Science, Université Ibn Zohr, Agadir 80000
  • Es-Said Akhouayri LETSMP, Department of Physics, Faculty of Science, Université Ibn Zohr, Agadir 80000
  • V. Fierro N2EV, Department of Nanomaterials, Electronics and Vivant-Institut Jean Lamour, UMR 7198 CNRS-UL, Epinal
  • A. Celzard N2EV, Department of Nanomaterials, Electronics and Vivant-Institut Jean Lamour, UMR 7198 CNRS-UL, Epinal
  • D. Prades Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona

DOI:

https://doi.org/10.26713/jamcnp.v7i3.1541

Keywords:

Forcespinning, ZnO, Nanotubes, Ethanol, Gas sensor, UV-light activation, Room temperature

Abstract

A gas sensor based on force spun ZnO nanotubes was successfully developed by using a simple and cost-effective approach, as confirmed by SEM, EDS, TGA-DTG and XRD characterization techniques. In order to optimize the sensing performance of the device in terms of sensing response kinetics and stability, the sensor response behavior against ethanol vapor was investigated under dark and UV light. Different reported studies have demonstrated that the resistance of ZnO gas sensors towards ethanol decreases when it is exposed to UV light. In this work, the UV light illumination of the sensor at 370 nm, allowed effectively to activate the detection of ethanol at the ppm level at room-temperature, in contrast to dark conditions. Unexpectedly, it was observed that the resistance behavior of the prepared ZnO sensor was reversed under continuous UV irradiation. The sensing mechanism behind this change is being also discussed.

Downloads

Download data is not yet available.

References

V.M. Aroutiounian, Decrease in operation temperature of Zinc Oxide nanomarkers, Biomedical Journal of Scientific & Technical Research 30(2) (2020), 23211 – 23220, DOI: 10.26717/BJSTR.2020.30.004919.

A. Beniwal and Sunny, Apple fruit quality monitoring at room-temperature using sol-gel spin coated Ni-SnO2 thin film sensor, Journal of Food Measurement and Characterization 13(1) (2019), 857 – 863, DOI: 10.1007/s11694-018-9998-7.

V.S. Bhati, M. Hojamberdiev and M. Kumar, Enhanced sensing performance of ZnO nanostructuresbased gas sensors: a review, Energy Reports 6 (2020), 46 – 62, DOI: 10.1016/j.egyr.2019.08.070.

O. Bouaaliouat, H. Lahlou, E.-S. Akhouayri, A. Ihlal, A. Benlhachemi, D. Prades, V. Fierro, A. Celzard, F. Berger and J.-B. Sanche, Forcespun metal oxide ultrafine tubes for hazardous gas monitoring, Materials Today: Proceedings 27 (2020), 3124 – 3131, DOI: 10.1016/j.matpr.2020.04.009.

P.F. Cao, S.Y. Ma, X.L. Xu, B.J. Wang, Omer Almamoun, T. Han, X.H. Xu, S.T. Pei, R. Zhang, J.L. Zhang and W.W. Liu, Preparation and characterization of a novel ethanol gas sensor based on FeYO3 microspheres by using orange peels as bio-templates, Vacuum 177 (2020), 109359, DOI: 10.1016/j.vacuum.2020.109359.

G. Korotcenkov and B.K. Cho, Metal oxide composites in conductometric gas sensors: achievements and challenges, Sensors Actuators, B Chem. 244 (2017), 182 – 210, DOI: 10.1016/j.snb.2016.12.117.

R. Kumar, X. Liu, J. Zhang and M. Kumar, Room temperature gas sensors under photoactivation: from metal oxides to 2D materials, Nano-Micro Letters 12, Article number: 164 (2020), DOI: 10.1007/s40820-020-00503-4.

H. Lahlou, S. Claramunt, O. Monereo, D. Prades, J.-M. Fernandez-Sanjuá, N. Bonet, F.-M. Ramos and A. Cirer, Preparation of palladium oxide nanoparticles supported on tin oxide nanofibers via modified electrospinning for ultra-low ppb NO2 detection, Materials Today: Proceedings 36 (2020), 1 – 9, DOI: 10.1016/j.matpr.2020.04.674.

S. Lulwani, A. Beniwal and Sunny, Enhancing room-temperature ethanol sensing using electrospun Ag-doped SnO2-ZnO nanofibers, Journal of Materials Science: Materials in Electronics 3127 (2020), 17212 – 17224, DOI: 10.1007/s10854-020-04276-9.

Y.T. Ma, S. Ma, J. Tang, Z.G. Wu, J. Shi, Y. Zhao, S.T. Pei and P.F. Cao, Hydrothermal-synthesis flower-like SnS microspheres gas sensors bonded physically by PVDF for detecting ethanol, Vacuum 181 (2020), 109657, DOI: 10.1016/j.vacuum.2020.109657.

R. Ponnusamy, D. Sivasubramanian, P. Sreekanth, V. Gandhiraj, R. Philip and G.M. Bhalerao, Nonlinear optical interactions of Co: ZnO nanoparticles in continuous and pulsed mode of operations, RSC Advances 5(98) (2015), 80756 – 80765, DOI: 10.1039/c5ra10756c.

K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez and K. Lozano, Electrospinning to ForcespinningTM, Materials Today 13(11) (2010), 12 – 14, DOI: 10.1016/S1369-7021(10)70199-1.

P.P. Suha and M.K. Jayaraj, Enhanced room-temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction, BMC Chemistry 13, Article number: 4 (2019), 11 pages, DOI: 10.1186/s13065-019-0519-5.

Downloads

Published

2020-12-31
CITATION

How to Cite

Ydir, B., Boualiouaat, O., Lahlou, H., Bousseta, M., Akhouayri, E.-S., Fierro, V., Celzard, A., & Prades, D. (2020). Effect of UV-Light Illumination on Room Temperature ZnO Nanotubes for Ethanol Gas Sensing. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(3), 155–165. https://doi.org/10.26713/jamcnp.v7i3.1541

Issue

Section

Research Article