
Journal of Atomic, Molecular, Condensed Matter & Nano Physics
Vol. 7, No. 3, pp. 207–215, 2020
ISSN 2582-8215 (online)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/jamcnp.v7i3.1546

Proceedings of ICACTCE’21
High School of Technology, Moulay Ismail University Meknes, Morocco, and
Faculty of Sciences and Techniques Mohammedia, Hassan II University, Morocco
March 24 – 26, 2021, Morocco
Editors: Mariyam Ouaissa, Mariya Ouaissa, Sarah El Himer, and Zakaria Boulouard

Research Article

Metal-insulator Transition in 70Ge: Ga
Semiconductor by Applying the Scaling Laws
Mohamed Errai *1 , Said Amrane1 and C.-T. Liang2

1Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
2Department of Physics, National Taiwan University, Taipei 106, Taiwan

Abstract. In this article, we focus on the scaling theory of Abraham et al. without and with a
magnetic field on the metallic side of the Metal-Insulator Transition (MIT) for the three-dimensional
system 70Ge: Ga, at very low temperatures. In particular, we have determined the zero temperature
conductivity critical exponent when the MIT transition occurs with the variation of the impurity
concentration (υ= 0.503) and with the application of a magnetic field (υ= 1.06). We have also estimated
the critical magnetic field BC that separates the metallic behavior (B < BC) from the variable-range
hopping regime (B > BC). The data are for a 70Ge: Ga sample prepared and reported by Itoh et al.,
Physical Review Letters 77 (1996), 4058 and Watanabe et al., Physical Review B 60 (1999), 15817.
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1. Introduction
The Metal-Insulator Transition (MIT) is one of the most interesting problems in modern
condensed matter physics [7, 9, 18, 22, 29–31, 37]. Remarkable progress has been made in
the field of MIT, which improves our understanding of electrical transport mechanisms
in semiconductors such as crystalline and amorphous semiconductors at low temperatures
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[1,6,8,10], semiconductor alloys [24] and granular films [3,14,33].
The electrical conductivity σ of a sample strongly depends on the position of the mobility

edge, EC , (Mott [23]) with respect to the Fermi level EF and the degree of disorder. Interestingly,
by varying the magnetic field or the concentration of carriers or the composition of the samples,
the Fermi energy can be lower than the mobility threshold, leading to the transition from a
metallic state (delocalized state, σ(T = 0 K) 6= 0) to an insulating state (localized state, where
(T = 0 K)= 0).

In this article, we have study the electrical transport properties of the 70Ge: Ga system
[15,35], at low temperatures on the metallic side of the MIT. In fact, we checked the two scaling
laws of electrical conductivity at T = 0 K in the absence and in the presence of the magnetic
field. We also determined the critical magnetic field of the MIT.

2. Theoretical Background
In the metallic regime of MIT, the temperature dependence of the electrical conductivity of the
3D metallic samples at low temperatures can be described as follows [12,25]:

σ=σ(T = 0 K)+m T1/2 , (2.1)

where σ(T = 0) is the zero temperature conductivity, m the adjustable parameter, and T the
temperature.

We recall that the MIT can be induced by the application of the magnetic field or by varying
the impurity concentration. In addition, by analogy with the study of critical points in phase
transitions, The scaling law of Abrahams et al. could be verified. Mainly following the work of
Wegner [36], several critical behaviors have been predicted in the following:

When the MIT is induced by variation of the concentration of impurities n, Abrahams et al.
[2,4] showed that the zero temperature conductivity σ(0) follows the scaling law:

σ(0)=σC

(
n

nC
−1

)
. (2.2)

Here nC is the critical concentration of impurities that marks the boundary between the metallic
and insulating sides and υ is the zero-temperature conductivity critical exponent (with υ= 0.5
or υ= 1).

It is interesting to note that when n approaches nC , the zero-temperature conductivity
approaches zero. This is in good agreement with the scaling theory of Abraham et al. [2,4] who
predicted that the minimum metallic conductivity does not exist in non-interacting electron
systems.

In the case where the MIT is produced by the introduction of the magnetic field, the relation
(2.2) can be written in the following way:

σ(0)=σ′
C

(
1− B

BC

)
. (2.3)

Here σ′
C is a constant that has the dimension of the conductivity, BC is the critical magnetic

field that separates the metallic and insulating phases, and υ is the critical exponent.
According to equation (2.3), the zero-temperature conductivity σ(T = 0,B) is close to zero

when B approaches BC .
It is interesting to note that the scaling law have been verified in several systems.
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Furthermore, the critical exponent υ depends on the material. We also note that the scale
theory predicts that υ is of the order of 1 for three-dimensional materials. However, some
authors show that υ takes the value 1/2 for certain materials. We would like to point out that.

υ= 1 for semiconductors: GaAs [19,20], Ge:Sb [32], InSb [21], and for the majority of amorphous
alloys, as examples: NbxSi1−x [13], BixKr1−x [28] and amorphous silicon [29]. On the other
hand,

υ= 1/2 for uncompensated semiconductors such as Si:As [26], Ge:As [27]

3. Results and Discussion
3.1 Zero-Temperature Electrical Conductivity in the Absence Magnetic Field
We have reanalyzed experimental data for the 70Ge: Ga system prepared and reported in
refs. [15,35].

Figure 1 displays the temperature dependence of the electrical conductivity σ of ten metallic
samples 70Ge: Ga versus T1/2, in the temperature interval 0.017-0.53 K and in the absence
of a magnetic field. For the different values of the impurity concentration n varying between
1.861×1017 and 2.625×1017 cm−3.

We note that the critical impurity concentration that marks the boundary between the
metallic and insulating samples is equal to nC = 1.856×1017cm−3. 
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Figure 1. Electrical conductivity as a function of T1/2 for different concentrations of impurities.
As mentioned above, we have reanalyzed experimental data obtained in ref. [15]

We used this figure to extract the values of the zero-temperature electrical conductivity from
ten metallic samples 70Ge: Ga by the standard linear regression method. We then show the
evolution of the logarithm of σ(0) as a function of ln

( n
nc

−1
)

(see Figure 2). We have noted that
the slope determined by the linear fit is very close to 0.5 (υ= 0.503). We find that for the metallic
70Ge: Ga system σ(0) follows the scaling law given by equation (2.2). We also determined the
constant σC is σC = 29.16 (Ω cm)−1.

Journal of Atomic, Molecular, Condensed Matter & Nano Physics, Vol. 7, No. 3, pp. 207–215, 2020



210 Metal-insulator Transition in 70Ge: Ga Semiconductor by Applying the Scaling Laws: M. Errai et al.

-6 -5 -4 -3 -2 -1 0
0,0

0,5

1,0

1,5

2,0

2,5

3,0

L
n
(




) (




.c
m

-1
)

Ln(n/n
c
-1)

 

 
Figure 2. Variation of ln(σ(T = 0)) against ln

( n
nc

−1
)

3.2 Zero-Temperature Conductivity as a Function of the Magnetic Field
Figure 3 shows the temperature variation of the electrical conductivity behavior versus T1/2, for
different values of the magnetic field B between 1 and 8 T, at very low temperatures in the range
0.65 to 0.048 K for sample B2 with impurity concentration n = 2.004×1017 cm−3 of the metallic
system 70Ge: Ga. According to the data shown in this figure, we find that the application of the
magnetic field reduces the electrical conductivity and causes the sample to enter the insulating
phase. We also obtain the values of σ(T = 0, B) by extrapolating the curves σ(T, B) as a function
of T1/2 (the linear regression method). The values of σ(T = 0, B) are collected in Table 1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12 Sample B2 : n=2.004*1017cm-3

 (



.c
m

-1
)

T1/2(K1/2)

 B=1T
 B=2T
 B=3T
 B=4T
 B=4.7T
 B=5T
 B=5.3T
 B=5.6T
 B=6T
 B=7T
 B=8T
 

 

 

 

 

 

Figure 3. Temperature dependence of electrical conductivity with T1/2 in the presence of magnetic fields
between 1 and 8T, as indicated. We re-analyzed the experimental data obtained in ref. [18].
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Table 1. Table shows the values of magnetic fields (B) and Conductivity at T = 0 K (σ(T = 0, B)) deduced
by the linear regression method (Figure 3)

B (Tesla) σ(T = 0, B) (Ω cm)−1

1 8,2881

2 6,10946

3 4,38989

4 2,56061

4,7 1,22415

5 0,83393

5,3 0,30998

5,6 −0,08243

6 −0,53204

7 −1,24552

8 −1,16498
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   Figure 4. Zero-temperature conductivity versus magnetic field in the temperature range 0.048 to 0.65 K

for Sample B2

In Figure 4, we show the variations of the zero-temperature electrical conductivity as a
function of the magnetic field for the sample referenced B2. We note that σ(T = 0, B) decreases
linearly with the magnetic field (see Figure 4) and ends up canceling out for a value of the field
B approximately equal to 5.45 Teslas (BC ≈ 5.45 T). This allows us to determine the critical
magnetic field BC in sample B2 to be 5.45 T. This result is in good agreement with the values
collected in Table 1.

For B > 5.3 T, we found the negative values of the zero temperature conductivity that have
no physical significance, but they allow us to note that this sample is on the insulating side
of the MIT for B > Bc. In this case, the electronic states become localized and the electrical
transport could be governed by variable range hopping.
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In order to verify the scaling law of the conductivity (equation (2.3)), we show in Figure5
the logarithmic variation of σ(T = 0, B) as a function of ln(1−B/BC) for sample B2, in the
temperature range between 0.048 and 0.65 K. We can see a straight line fit which allows us to
determine the slope (see Figure 5).

We have found that the conductivity at T = 0 K follows the scaling law (2.3) with a critical
exponent very close to the theoretical value υ= 1 (υ= 1.06). Indeed, there is a good agreement
with the scaling theory of Abraham et al. (2.3) and we found the value of constant σ′

C = 10.3056
(Ω cm)−1.
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Figure 5. Variation of the logarithm of σ(T = 0, B) as a function of ln(1−B/BC) for sample B2

4. Conclusion
In this paper, we have systematically investigated the electrical transport properties of the
metallic side of MIT in the 70Ge: Ga system, by verifying the two scaling laws by studying
zero-temperature conductivity [5,16,34]. Indeed, when the MIT is induced by changing in the
impurity concentration, we found that critical exponent close to 0.5. In addition, we obtained
a critical exponent very close to unity, when the MIT is produced by varying the magnetic
field. We have also estimated the critical magnetic field that marks the boundary between the
metallic phase and the insulating phase. Moreover, we note that the application of the magnetic
field causes the sample to return to the insulating phase [11,17].
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