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Abstract. In this study, we examine the effect of a uniform external magnetic field on Rayleigh-
Bénard convection in a square cavity filled with a ferrofluid. Numerical simulations are based on
the Lattice Boltzmann method. The effects of physical parameters, which are the Rayleigh number,
the Hartmann number, and the angle of inclination of the magnetic field are studied. The results
obtained are graphically illustrated and discussed for a volume fraction of four percent. These results
show that the rate of heat transfer decreases by increasing the Hartmann number. For high Rayleigh
number values, the maximum heat transfer rate was obtained for a specific Hartmann number when
the Lorentz and buoyancy forces are perpendicular.
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1. Introduction
Heat transfer generated by Rayleigh-Bénard (RB) convection in confined spaces has been the
subject of several studies [11,17]. This interest is motivated by the involvement of such problems
in various applications, such as reactor cooling, solar collectors, heat exchangers, and crystal
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growth, etc. [1]. RB configurations constitute a category apart of problems that require critical
thresholds to trigger the confined fluids’ movements. The presence of an additional force (e.g.
Lorentz force) to the buoyancy one may have a considerable effect (depending on its intensity) on
the threshold values in such problems. On another side, the low thermal conductivity values of
conventional basic fluids such as water, ethylene glycol, oil, etc., reduce the performances of the
systems involving these fluids for cooling purposes. In 1995, Choi [4] proposed to add nano-sized
solid particles suspended in water (base fluid) to form a homogeneous mixture called nanofluid.
Their results show an improvement of heat transfer in the presence of these nanoparticles.

The literature review shows that numerous studies have been devoted to the analysis of
convective heat transfer by natural convection in systems containing nanofluids. For instance,
Khanafer et al. [9] used the volume control method to study the heat transfer in a differentially
heated square cavity using the nanofluid copper-water. They concluded that the increase of the
volume fraction of nanoparticles has a positive effect on heat transfer. Ho et al. [8] carried out an
experimental investigation on natural convection in three square enclosures of different sizes,
confining the nanofluid Al2O3-H2O. They have examined the combined effects of the Rayleigh
number and the volume fraction of nanoparticles in these configurations. Recently, the impact
of magnetohydrodynamic forces (MHD) on flow characteristics and heat transfer of nanofluids,
generated by natural convection, has been widely studied. The problem of natural convection in
a square cavity confining the nanofluid Al2O3-H2O and subjected to an external magnetic field
was investigated numerically by Mahmoudi et al. [10]. In this study, the simulation tool was
based on the lattice-Boltzmann method. Rahimpour and Moraveji [13] carried out a numerical
study by modeling natural convection heat transfer in a C-shaped inclined cavity filled with
the ferrofluid Fe3O4-H2O under the effect of a magnetic field. The results presented show
that heat transfer decreases by increasing the magnetic field strength characterized by the
Hartmann number. This trend confirms the slowing down of conductive fluid flows generated by
the increase of the magnetic field. On another side, magnetic nanofluids (ferrofluid) have an
inherent advantage compared to non-magnetic nanofluids, resulting from the fact that, for the
formers, the magnetic field can be used to control thermomagnetic convection. Furthermore,
earlier experimental studies have shown that the thermal conductivity of the ferrofluid may be
improved by about 300% for a certain orientation of the magnetic field, which is about six times
higher than that of non-magnetic nanofluids [12,15].

The aim of this study is to examine the impact of a magnetic field inclination on the flow
characteristics and heat transfer in a Rayleigh-Bénard square cavity filled with the ferrofluid
Fe3O4-H2O.

2. Mathematical Formulation
2.1 Description of the Physical Problem
The studied two-dimensional physical model is shown schematically in Figure 1. It is a square
cavity (L×L) thermally insulated from its vertical sides, heated from below and cooled from
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above. The cavity is filled with the ferrofluid Fe3O4-H2O, assumed Newtonian and subjected to
the action of a uniform and inclined external magnetic field. Moreover, the flow is laminar, and
all the thermo-physical properties of the ferrofluid are considered constant, except the density
in the buoyancy term, which obeys the Boussinesq approximation.

 

 

  

Figure 1. Schematic of the studied configuration

2.2 Lattice Boltzmann method
The method used in this study is the Lattice Boltzmann Method (LBM), preferred by many
authors over conventional methods for objective reasons. Its main advantages lie in its simplicity,
its stability, and its ease of adaptation to face the complex problems of thermal convection.

After linearizing the collision term by the Bhatnagar-Gross-Krook (BGK) approximation
[2], two independent distribution functions are used to solve the momentum (2.1) and energy
equations (2.2). The numerical simulation is achieved in two steps; the collision between
the fluid particles (the term on the right side of eq. (2.1)) and the streaming between these
particles (the first term on the left side of eq. (2.1)) according to the D2Q9 model (Figure 2). The
lattice Boltzmann equation in the presence of an external force can be written for the flow and
temperature fields as follows:

fk(~r+ ek∆t, t+∆t)− fk(~r, t)= ∆t
τυ

( f eq
k (~r, t)− fk(~r, t))+∆tFk , (2.1)

gk(~r+ ek∆t, t+∆t)− gk(~r, t)= ∆t
τα

(geq
k (~r, t)− gk(~r, t)) , (2.2)

where (~r, t) is the instantaneous position of the fluid particle. ek is the discrete velocity in the
direction k. The parameters τυ = 3υ+1/2 and τα = 3α+1/2 are respectively the relaxation time
coefficients of the momentum and energy equations and Fk is the external force at the lattice
scale.
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Figure 2. Discrete speeds of the D2Q9 model

The quantities f eq
k and geq

k are respectively the equilibrium distribution functions for
velocity and temperature fields, defined by eqs. (2.3) and (2.4).

f eq
k =ωkρ

(
1+3~ek~u+ 9

2
(~ek~u)2 − 3

2
(~u)2

)
, (2.3)

geq
k =ωkθ(1+3~ek~u) , (2.4)

where ρ is the fluid density at the lattice scale and ωk is the weighting factor. For the D2Q9
model, ek and ωk are defined as follows:

ek =


(0,0), for k = 0,
(cos(π(k−1)/2),sin(π(k−1)/2)), for k = 1−4,p

2(cos(π(k−9/2)/2),sin(π(k−9/2)/2)), for k = 5−8,
(2.5)

ωk =


4/9, for k = 0,
1/9, for k = 1−4,
1/36, for k = 5−8.

(2.6)

The external force term, Fk in eq. (2.1), is composed by two forces (the buoyancy and magnetic
forces) evaluated as:

Fx = A(sin(γ)cos(γ)v−usin2(γ)),
F y= gβ(θ−θm)+ A(sin(γ)cos(γ)u−vcos2(γ)),
Fk = 3ωkρ(ekxFx+ ekyF y)

 (2.7)

where A = Ha2ϑ/L2, Ha = LB0
√
σ f /µ f is the Hartmann number and γ is the inclination of the

magnetic field relative to the horizontal axis.
The macroscopic quantities ρ, u, v, and θ are calculated using the following expressions:

ρ =∑
fk, u = 1

ρ

∑
fkekx,

v = 1
ρ

∑
fkeky, θ =∑

gk .

 (2.8)
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2.3 Boundary Conditions
For velocity: the rigid walls that delimit the physical domain are motionless. At the lattice
scale, the distribution functions pointing outside the physical domain are known after streaming.
The distribution functions pointing inside the physical domain at the rigid walls are calculated
using bounce-back boundary conditions.

For temperature: At the adiabatic vertical walls, temperatures are determined by assuming
that the first derivative of each distribution function g is null. For the isothermal walls, the
distribution functions are defined as follows:

g4 = θc (ω4 +ω2)− g2

g7 = θc (ω7 +ω5)− g5

g8 = θc (ω8 +ω6)− g6

 (Top wall)

g2 = θh (ω2 +ω4)− g4

g5 = θh (ω5 +ω7)− g7

g6 = θh (ω6 +ω8)− g8

 (Bottom wall)


(2.9)

2.4 Lattice Boltzmann for Ferrofluid
The LBM is very suitable to simulate the convective heat transfer of ferrofluids (magnetic
nanofluids). The latter behave differently at the mesoscopic scale compared to pure fluids.
In the present study, the hypotheses of nanoparticles uniformly dispersed in the base fluid
(homogeneous mixture) and in thermal equilibrium with the latter are adopted. Thermo-physical
properties of ferrofluid [6], listed in Table 1 (density (ρ f f /ρ f ), specific heat ((ρcp) f f /(ρcp) f ),
thermal expansion (β f f /β f ), dynamic viscosity (µ f f /µ f ), thermal conductivity (k f f /k f ), and
electrical conductivity (σ f f /σ f ) are evaluated using correlations that are taken into account in
the governing equations [5].

ρ f f = (1−ϕ)ρ f +ϕρs

(ρcp) f f = (1−ϕ)(ρcp) f +ϕ(ρcp)s

β f f = (1−ϕ)β f +ϕβs

 (2.10)

The dynamic viscosity is expressed by the Brinkman model [3]:
µ f f

µ f
= 1

(1−ϕ)2.5 . (2.11)

Thermal conductivity is evaluated by the Hamilton and Crosser model [7]:
k f f

k f
= ks +2k f −ϕ(k f −ks)

ks +2k f +ϕ(k f −ks)
. (2.12)

The Prandtl and Rayleigh numbers, which are among the parameters of the problem, are
defined as follows:

Pr = υ f /α f and Ra = gβ∆TL3/υ fα f . (2.13)

The local Nusselt number at the hot wall is evaluated as:

Nuloc =−k f f

k f

∂θ

∂Y

∣∣∣∣
Y=0

. (2.14)
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Whereas the average Nusselt number is defined by:

Num =
∫ 1

0
NulocdX . (2.15)

Table 1. Thermo-physical properties of water and nanoparticles [6]

Pure water Fe3O4

Pr 6.200

ρ(Kg/m3) 997.100 5200.00

Cp(J/Kg K) 4179.000 670.00

K(W/m K) 0.613 6.00

β×105(K−1) 21.000 1.30

σ(mΩ)−1 0.050 25000.00

3. Numerical Validation of the LBM Code
The present numerical code was firstly validated against different works published in the
literature in the case of natural convection in a square cavity heated from below, cooled from
above (Rayleigh-Bénard configuration), and filled with air (Pr = 0.71). The comparative results
presented in Table 2, in terms of Nusselt numbers for various Rayleigh numbers, show that the
LBM code reproduces the results obtained by Ouertatani et al. [11], Turan et al. [16], and Xu et
al. [17] with a maximum deviation of 0.57%. In addition, the code was validated qualitatively in
the presence of an inclined magnetic field against the results published by Sathiyamoorthy and
Chamkha [14]. The results presented in Figure 3 in the case of a square cavity filled with the
gallium and obtained with Ra = 105, Ha = 50, Pr = 0.025, and a magnetic field tilted with an
angle of 90◦, show an excellent qualitative agreement. Finally, the sensitivity of the results with
respect to the grid was carried out using the grids 120×120, 160×160, 240×240 and 320×320.
The results obtained for Ra = 105, ϕ= 4%, Ha = 50 and a convergence condition of 10−8 (not
presented here) have shown that the uniform grid 160×160 was enough to carry out this study.

Table 2. Comparison of Nusselt number of our code and the results of Ouertatani et al. [11], Turan et al.
[16], and Xu et al. [17]

Ra Our code Ref. [11] Ref. [16] Ref. [17] Max deviation

104 2.1594 2.1581 2.154 2.1581 0.25%

105 3.9174 3.9103 3.907 3.9102 0.27%

106 6.3447 6.309 3.363 . . . 0.57%
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Figure 3. Validation in terms of streamlines (a), and isotherms (b), against the results presented in Ref.
[14] (left), for Ra = 105, Ha = 50, Pr = 0.025 and γ= 90 ◦

4. Results and Discussion
The present study focuses on the impact of an inclined uniform magnetic field on heat transfer
and ferrofluid flow for two values of Rayleigh number (Ra = 104 and 105), various values of
Hartmann number (Ha = 0, 25 and 50), and an inclination γ of the magnetic field varying
between 0 ◦ and 135 ◦ with an increment of 45 ◦. The volume fraction of nanoparticles is fixed at
ϕ= 4%.

4.1 Effect of Hartmann Number for γ= 0◦

The Hartmann number effect on the ferrofluid Fe3O4-H2O is illustrated in Figures 4 and 5 for
the streamlines and isotherms, respectively. For a given Rayleigh number, the increase of Ha
leads to significant qualitative and quantitative changes in the flow intensity and structure in
the convective regime in the presence of the magnetic field. In fact, Figure 4 shows that the
increase of the Hartmann number brings the fluid flow back to the rest state from a critical
Hartmann number (Hac = 19) for Ra = 104, and reduces considerably its intensity for Ra = 105.
For the latter value of Ra, for which the convection survives in the whole range of Ha, the
most important qualitative changes are observed in the central region of the cavity. In fact, the
central cells are horizontal for Ha = 0, take an oval shape for Ha = 25 and straighten up to
approach the vertical shape for Ha = 50. Moreover, the increase of Ha causes a disappearance
of the secondary cells without modifying too much the trajectories of the particles on the
peripheral lines, which remain practically parallel to the walls apart from the the effect of the
corners. Overall, the effect of the Lorentz force is opposite to that of the buoyancy force and the
higher the Rayleigh number the higher the Hartmann number required to bring the ferrofluid
flow back to a static state. Due to the strong coupling between the velocity and temperature
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fields, the qualitative and quantitative effects on the temperature distribution inside the cavity,
accompanying the increase of the Hartmann number are important as it can be seen in Figure 5.
Indeed, in the presence of the magnetic field, the distortions of the isotherms observed for
Ra = 105 are more and more attenuated in the central region of the cavity and the thermal
gradients at the level of the active walls are more and more weakened by incrementing Ha.
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Figure 4. Streamlines for ϕ= 4% and different values of Ra andHa
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Figure 5. Isotherms for ϕ= 4% and different values of Ra and Ha
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4.2 Effect of the Inclination Angle of the Magnetic Field
For large values of the Hartmann number, just above the threshold value Ha = 19, the ferrofluid
flow becomes purely conductive at Ra = 104 since the Lorentz force overcomes the buoyancy one.
To clearly demonstrate the effect of the inclination angle of the magnetic field, the value of Ra
was set at 105. The effect of the inclination angle of the magnetic field is illustrated in Figure 6a
for Ra = 105 and Ha = 50. It is to underline that the flow structure remains monocellular for
Ha = 25 while varying the inclination of the magnetic field in its range but the intensity of
the flow and the shape of the central cells are affected by varying the parameter γ (results
not presented). However, for Ha = 50 the transformations undergone by the flow structure
and resulting from the variation of the inclinations are spectacular. In fact, by increasing the
inclination γ from 0 ◦ to 45 ◦, the flow switches from a monocellular structure to a multicellular
one consisting of three cells inclined parallel to a diagonal of the cavity, and presenting a
symmetry with respect to the latter. The inclination 90 ◦ straightens the three cells that take
the vertical position while preserving the flow symmetry with respect to the vertical median.
For γ = 135 ◦, the flow structure becomes mainly unicellular again with the positive central
cell, observed for γ= 45 ◦ and 90 ◦, totally dominating the flow and its axis of symmetry is the
second diagonal of the cavity. In this structure, the two negative cells are reduced to two small
vortices, one located at the upper right corner of the cavity and the other at its lower left corner.
These important transformations of the flow structure, resulting from the change of the Lorentz
force direction (that is perpendicular to the magnetic field vector), show that the direction of
the imposed magnetic field is an important parameter that may play a role and should not be
ignored.  
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Figure 6. Streamlines (a) and isotherms (b) for Ra = 105, ϕ= 4%, Ha = 50 and different values of γ
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Regarding the thermal behavior shown in Figure 6b in terms of isotherms, it can be observed
that the temperature distribution within the cavity is very much affected by the nature of the
corresponding flow (number of cells, their intensities, their orientations, their interactions with
the active walls, etc.). More specifically, for Ha = 50 the distribution of the temperature field
presents an aspect more or less complex depending if the flow structure is multicellular or
unicellular, which is a consequence of the strong coupling between velocity and temperature in
thermal natural convection.

4.3 Heat Transfer
For the evaluation of the impact of the magnetic field orientation on the average heat transfer,
Figure 7 exemplifies the variations of Num versus γ for Ra = 105, ϕ= 4% and different values
of the Hartmann number. The first remark, expected due to the damping role of the magnetic
field, is the negative impact of Ha on heat transfer for all inclinations γ. In addition, it is
obvious that Num remains insensible to the variations of γ for Ha = 0 due to the absence of
the magneticfield. Nevertheless, for Ha = 50 the magnetic field orientation has a non-negligible
effect on the average heat transfer, and leads to irregular variations in the mean Nusselt
number by varying γ. These irregularities are attributed to the changes in thermal gradients
in the walls, accompanying the changes undergone by the convective structures. Overall, for
a given inclination of the magnetic field, the average heat transfer decreases drastically by
increasing the Hartmann number.
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Figure 7. Variations of the average Nusselt number vs. the inclination of the magnetic field for Ra = 105

5. Conclusion
The present study reports preliminary results obtained based on numerical simulations of
natural convection in a Rayleigh-Bénard-type square cavity filled with a ferrofluid under

Journal of Atomic, Molecular, Condensed Matter & Nano Physics, Vol. 7, No. 3, pp. 133–144, 2020



Lattice Boltzmann Simulation of MHD Rayleigh-Bénard Natural Convection. . . : K. Chtaibi et al. 143

the effect of an external magnetic field. The equations describing the physical problem were
solved using the lattice Boltzmann method. The results of this study show that the increase of
the Hartmann number brought back the ferrofluid flow to the rest state from some threshold
value that depends on Ra. Moreover, in addition to the magnetic field intensity, its orientation
is also a parameter that plays a non-negligible role. Finally, the study should be treated in more
depth to elucidate the hidden aspects of this problem.
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