On Asymptotically \(f\)-statistical Equivalent Set Sequences in the Sense of Wijsman
DOI:
https://doi.org/10.26713/cma.v10i3.650Keywords:
Statistical convergence, Sequence space, Modulus function, Asymptotically equivalent set sequences, Wijsman convergenceAbstract
The aim of this paper is to introduce a generalization of statistical convergence of asymptotically equivalent set sequences and examine some inclusion relations related to a new concept of Wijsman asymptotically equivalent statistical convergence of sequences of sets with respect to a modulus function \(f\).
Downloads
References
A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaestiones Mathematicae 37(4) (2014), 525 – 530, DOI: 10.2989/16073606.2014.981683.
M. Baronti and P. L. Papini, Convergence of sequences of sets, Methods of Functional Analysis in Approximation Theory 76 (1986), 135 – 155.
V. K. Bhardwaj and S. Dhawan, (f)-statistical convergence of order /alpha and strong Cesaro summability of order with respect to a modulus, J. Ineq. Appl. 2015 (332) (2015), 14 pages, DOI: 10.1186/s13660-015-0850-x.
V. K. Bhardwaj, S. Dhawan and S. Gupta, Density by moduli and statistical boundedness, Abst. Appl. Analysis 2016 (2016), Article ID 2143018, 6 pages, DOI: 10.1155/2016/2143018.
V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence, Abst. Appl. Analysis 2016 (2016), Article ID 9365037, 11 pages, DOI: 10.1155/2016/9365037.
V. K. Bhardwaj and S. Dhawan, Density by moduli and Wijsman lacunary statistical convergence of sequences of sets, J. Ineq. Appl. 2017(25) (2017), DOI: 10.1186/s13660-017-1294-2.
V. K. Bhardwaj, S. Dhawan and O. A. Dovgoshey, Density by moduli and Wijsman statistical convergence, Bull. Belg. Math. Soc. 24 (2017), 393 – 415, DOI: 10.36045/bbms/1506477689.
T. Bilgin, ((sigma,f))-Asymptotically lacunary equivalent sequences, International J. Analysis 2014 (2014), Article ID 945902, 8 pages, DOI: 10.1155/2014/945902.
H. Fast, Sur la convergence statistique, Colloq. Math. 2(3-4) (1951), 241 – 244, http://eudml.org/doc/209960.
B. Inan and M. Küçükaslan, Ideal convergence of sequence of sets, Contem. Anal. Appl. Math. 3(2) (2015), 184 – 212, DOI: 10.18532/caam.96325.
I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100(1) (1986), 161 – 166, DOI: 10.1017/S0305004100065968.
M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16(4) (1993), 755 – 762, DOI: 10.1155/S0161171293000948.
H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953), 29 – 49, https://projecteuclid.org/download/pdf_1/euclid.jmsj/1261415624.
I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Fifth Ed., John Wiley and Sons, New York (1991), DOI: 10.2307/3618659.
F. Nuray, U. Ulusu and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Comput. 20(7) (2016), 2883 – 2888, DOI: 10.1007/s00500-015-1691-8.
F. Nuray and B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87 – 99, http://www.math.put.poznan.pl/artykuly/FM49(2012)-NurayF-RhoadesBE.pdf.
N. Pancaroglu and F. Nuray, Invariant statistical convergence of sequences of sets with respect to a modulus function, Abstr. Appl. Anal. 2014 (2014), 818020, DOI: 10.1155/2014/818020.
R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math. 36(1) (2003), 149 – 153, https://www.degruyter.com/downloadpdf/j/dema.2003.36.issue-1/dema-2003-0116/dema-2003-0116.pdf.
R. F. Patterson and E. Sava¸s, On asymptotically lacunary statistically equivalent sequences, Thai J. Math. 4 (2006), 267 – 272, http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/90/88.
W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math. 25 (1973), 973 – 978, DOI: 10.4153/CJM-1973-102-9.
I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(5) (1959), 361 – 375, DOI: 10.2307/2308747.
E. Seneta, Regularly varying functions, Lecture Notes in Mathematics 508, Springer-Verlag, Berlin ” Heidelberg ” New York (1976), https://www.springer.com/gp/book/9783540076186.
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2(1) (1951), 73 – 74.
O. Talo, Y. Sever and F. Basar, On statistically convergent sequences of closed sets, Filomat 30(6) (2016), 1497 – 1509, DOI: 10.2298/FIL1606497T.
U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Prog. Appl. Math. 4(2) (2012), 99 – 109.
U. Ulusu and F. Nuray, Lacunary statistical summability of sequences of sets, Konuralp J. Math. 3(2) (2015), 176 – 184, https://dergipark.org.tr/download/article-file/507495.
U. Ulusu and F. Nuray, On asymptotically lacunary statistical equivalent set sequences, J. Math. 2013 (2013), Article ID 310438, 5 pages, DOI: 10.1155/2013/310438.
R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Am. Math. Soc. 70 (1964), 186 – 188, https://www.ams.org/journals/bull/1964-70-01/S0002-9904-1964-11072-7/S0002-9904-1964-11072-7.pdf.
R. A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Am. Math. Soc. 123(1) (1966), 32 – 45, DOI: 10.2307/1994611.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.