On Generalized Absolute Matrix Summability of Infinite Series

Authors

  • Hikmet S. í–zarslan Department of Mathematics, Erciyes University, 38039 Kayseri
  • Ahmet Karakaş Department of Mathematics, Erciyes University, 38039 Kayseri

DOI:

https://doi.org/10.26713/cma.v10i3.603

Keywords:

Summability factors, Absolute matrix summability, Almost increasing sequence, Infinite series, Hölder inequality, Minkowski inequality

Abstract

In this paper, we have generalized a known theorem on \(|\bar{N},p_n|_{k}\) summability factors of infinite series with a new summability method by using almost increasing sequences. This new theorem also includes several new and known results.

Downloads

Download data is not yet available.

References

N. K. Bari and S. B. Steˇckin, Best approximations and differential properties of two conjugate functions, (Russian) Trudy Moskov. Mat. ObšË‡c. 5 (1956), 483 – 522, URL: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mmo&paperid=56&option_lang=eng.

H. Bor, A note on (|bar{N},p_{n}|_{k}) summability factors of infinite series, Indian J. Pure Appl. Math. 18 (1987), 330 – 336, URL: https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a53_330.pdf.

H. Bor, A note on absolute Riesz summability factors, Math. Inequal. Appl. 10 (2007), 619 – 625, DOI: 10.7153/mia-10-58.

H. Bor, Absolute summability factors for infinite series, Indian J. Pure Appl. Math. 19 (1988), 664 – 671, URL: https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a52_664.pdf.

H. Bor, On local property of (|bar{N},p_{n};delta|_{k}) summability of factored Fourier series, J. Math. Anal. Appl. 179 (1993), 646 – 649, DOI: 10.1006/jmaa.1993.1375.

H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985), 147 – 149, DOI: 10.1017/S030500410006268X.

A. N. Gürkan, Absolute Summability Methods of Infinite Series, Ph.D Thesis, Erciyes University, Kayseri (1998).

G. H. Hardy, Divergent Series, Oxford University Press, Oxford (1949), URL: https://sites.math.washington.edu/~morrow/335_17/Hardy-DivergentSeries%202.pdf.

H. S. í–zarslan, A new application of almost increasing sequences, Miskolc Math. Notes 14 (2013), 201 – 208, DOI: 10.18514/MMN.2013.390.

H. S. í–zarslan and H. N. í–ğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl. 1 (2004), Article 13, 7 pages, URL: https://ajmaa.org/searchroot/files/pdf/v1n2/v1i2p13.pdf.

S. M. Mazhar, A note on absolute summability factors, Bull. Inst. Math. Acad. Sinica 25 (1997), 233 – 242, URL: https://web.math.sinica.edu.tw/bulletin/bulletin_old/d253/25304.pdf.

W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series (IV), Indian J.Pure Appl. Math. 34 (11) (2003), 1547 – 1557, https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/2000c4ed_1547.pdf.

Downloads

Published

30-09-2019
CITATION

How to Cite

í–zarslan, H. S., & Karakaş, A. (2019). On Generalized Absolute Matrix Summability of Infinite Series. Communications in Mathematics and Applications, 10(3), 439–446. https://doi.org/10.26713/cma.v10i3.603

Issue

Section

Research Article