A New Robust Application for Singularly Perturbed Volterra-Integro Differential Equations

Authors

DOI:

https://doi.org/10.26713/cma.v16i2.3108

Keywords:

Integro differential equation, Singularly perturbed equation, ADM (Adomian Decomposition Method), Error evaluation, Series solution

Abstract

In this study, we aimed to approximately solve singularly perturbed Volterra-integro differential equation with the Adomian decomposition method. The solution procedure is easy and fast. Firstly, the equation is written in operator form. Then the integral operator is applied to all sides of the equation. The series solution is obtained by applying some operations to the given equation and then converting it into a recurrence relation. Error values show that the solution results obtained for the two applied examples are very close to each other. The proposed method gives successful results with 21 and 23 iterations.

Downloads

Download data is not yet available.

References

G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer, Dordrecht, xiv + 354 pages (1994), DOI: 10.1007/978-94-015-8289-6.

G. Adomian, A review of the decomposition method and some recent results for nonlinear equation, Mathematical and Computer Modelling 13(7) (1990), 17 – 43, DOI: 10.1016/0895-7177(90)90125-7.

G. Adomian and R. Rach, Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition, Journal of Mathematical Analysis and Applications 174(1) (1993), 118 – 137, DOI: 10.1006/jmaa.1993.1105.

G. M. Amiraliyev and I. Amirali, Nümerik Analiz Teori ve Uygulamalarla, Ankara, Türkiye, Seçkin Yayıncılık, (2018). (in Turkish)

D. Arslan, A uniformly convergent numerical study on Bakhvalov-Shishkin mesh for singularly perturbed problem, Communications in Mathematics and Applications 11(1) (2020), 161 – 171, DOI: 10.26713/cma.v11i1.1349.

D. Arslan, Approximate solution of singularly perturbed problems with numerical integration method, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27(3) (2022), 612 – 618, DOI: 10.53433/yyufbed.1094184. (in Turkish)

E. Babolian, H. Sadeghi and S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Applied Mathematics and Computation 161(3) (2005), 733 – 744, DOI: 10.1016/j.amc.2003.12.071.

T. A. Burton, Volterra Integral and Differential Equations, 2nd edition, Elsevier, Amsterdam, Netherland, viii + 355 pages (2005).

F. Cakir, M. Çakir and H. G. Cakir, A robust numerical technique for solving non-linear Volterra integro-differential equations with boundary layer, Communications of the Korean Mathematical Society 37(3) (2022), 939 – 955, DOI: 10.4134/CKMS.c210261.

M. Cakir and D. Arslan, The Adomian decomposition method and the differential transform method for numerical solution of multi-pantograph delay differential equations, Applied Mathematics 6(8) (2015), 1332 – 1343, DOI: 10.4236/am.2015.68126.

E. Celik and K. Tabatabaei, Solving a class of Volterra integral equation systems by the differential transform method, International Journal of Nonlinear Science 16(1) (2013), 87 – 91, URL: https://scispace.com/pdf/solving-a-class-of-volterra-integral-equation-systems-by-the-15veal3iwo.pdf.

Y. Cherruault, Convergence of Adomian’s method, Kybernetes 18(2) (1989), 31 – 38, DOI: 10.1108/eb005812.

Y. Cherruault and G. Adomian, Decomposition methods: A new proof of convergence, Mathematical and Computer Modelling 18(12) (1993), 103 – 106, DOI: 10.1016/0895-7177(93)90233-O.

E. Cimen, A computational method for Volterra integro-differential equation, Erzincan University Journal of Science and Technology 11(3) (2018), 347 – 352, DOI: 10.18185/erzifbed.435331.

E. P. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 324 pages (1980).

I. L. El-Kalla, Error analysis of Adomian series solution to a class of nonlinear differential equations, Applied Mathematics E-Notes 7 (2007), 214 – 221.

P. Farrell, A. Hegarty, J. H. Miller, E. O’Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman Hall/CRC, New York, 256 pages (2000).

A. Haliru, D. Y. Ibrahim, A. M. Gatawa and S. Y. Zayyanu, Classical Adomian and modified Adomian decomposition methods for nonlinear Fredholm integral equations of the second kind, International Journal of Innovative Mathematics, Statistics & Energy Policies 11(4) (2023), 29 – 37.

T. I. Hassan and C. I. Hussein, Modification of Adomian decomposition method to solve two dimensions Volterra integral equation second kind, Cihan University-Erbil Scientific Journal 8(1) (2024), 41 – 45, DOI: 10.24086/cuesj.v8n1y2024.pp41-45.

A. Jerri, Introduction to Integral Equations with Applications, 2nd edition, John Wiley & Sons, Inc., New York, (1999).

J.-P. Kauthen, A survey on singularly perturbed Volterra equations, Applied Numerical Mathematics 24(2-3) (1997), 95 – 114, DOI: 10.1016/S0168-9274(97)00014.

P. K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, 1st edition, Birkhauser, Boston, xviii + 508 pages (2002), DOI: 10.1007/978-1-4612-0101-4.

A. S. Lodge, J. B. McLeod and J. A. Nohel, A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics 80(1-2) (1978), 99 – 137, DOI: 10.1017/S0308210500010167.

H. M. Malaikah, The Adomian decomposition method for solving Volterra-Fredholm integral equation using Maple, Applied Mathematics 11(8) (2020), 779 – 787, DOI: 10.4236/am.2020.118052.

D. A. Maturi, Adomian decomposition method for solving of Fredholm integral equation of the second kind using Matlab, International Journal of GEOMATE 11 (2016), 2830 – 2833.

D. A. Maturi, Adomian decomposition method of Fredholm integral equation of the second kind using Maple, Journal of Advances in Mathematics 9(1) (2014), 1868 – 1875.

D. A. Maturi and H. M.Malaikah, Numerical solution of system of three nonlinear Volterra integral equation using implicit trapezoidal, Journal of Mathematics Research 10(1) (2018), 44 – 58, DOI: 10.5539/jmr.v10n1p44.

N. A. Mbroh, S. C. O. Noutchie and R. Y. M. Massoukou, A second order finite difference scheme for singularly perturbed Volterra integro-differential equation, Alexandria Engineering Journal 59(4) (2007), 2441 – 2447, DOI: 10.1016/j.aej.2020.03.007.

N. N. Nefedov, A. G. Nikitin and T. A. Urazgil’dina, The Cauchy problem for a singularly perturbed Volterra integro-differential equation, Computational Mathematics and Mathematical Physics 46 (2006), 768 – 775,DOI: 10.1134/S0965542506050046.

R. E. O’Malley, Singular Perturbations Methods for Ordinary Differential Equations, Springer, New York, viii + 227 pages (1991), DOI: 10.1007/978-1-4612-0977-5.

J. I. Ramos, Exponential techniques and implicit Runge-Kutta method for singularly perturbed Volterra integro differential equations, Neural, Parallel and Scientific Computations 16 (2008), 387 – 404.

J. I. Ramos, Piecewise-quasilinearization techniques for singularly perturbed Volterra integrodifferential equations, Applied Mathematics and Computation 188(2) (2007), 1221 – 1233, DOI: 10.1016/j.amc.2006.10.076.

H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, 1st edition, Springer-Verlag, Heidelberg, xvi + 352 pages (1996), DOI: 10.1007/978-3-662-03206-0.

S. ¸Sevgin, Numerical solution of a singularly perturbed Volterra integro-differential equation, Advances in Continuous and Discrete Models 2014 (2014), Article number: 171, DOI: 10.1186/1687-1847-2014-171.

A. A. Salama and S. A. Bakr, Difference schemes of exponential type for singularly perturbed Volterra integro-differential problems, Applied Mathematical Modelling 31(5) (2007), 866 – 879, DOI: 10.1016/j.apm.2006.02.007.

X. Tao and Y. Zhang, The coupled method for singularly perturbed Volterra integro-differential equations, Advances in Continuous and Discrete Models 2019 (2019), Article number: 217, DOI: 10.1186/s13662-019-2139-8.

Ö. Yapman and G. M. Amiraliyev, A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation, International Journal of Computer Mathematics 97(6) (2020), 1293 – 1302, DOI: 10.1080/00207160.2019.1614565.

Downloads

Published

20-08-2025
CITATION

How to Cite

Arslan, D. (2025). A New Robust Application for Singularly Perturbed Volterra-Integro Differential Equations. Communications in Mathematics and Applications, 16(2), 419–427. https://doi.org/10.26713/cma.v16i2.3108

Issue

Section

Research Article