Second Hankel Determinant for certain Subclass of p-valent Analytic Function

Authors

  • Ashwini s Yuvaraja's College
  • Ruby Salestina M Yuvaraja's college, Mysuru
  • Kaliappan Vijaya Vellore Institute of Technology, Vellore

Keywords:

p-valent analytic function, Second Hankel determinant, Fekete-Szego functional

Abstract

The aim of this paper is to find sharp upper bound for the Second
Hankel determinant and Fekete-Szego functional for certain subclass ¨
of p-valent analytic function.

Downloads

Download data is not yet available.

Author Biographies

Ruby Salestina M, Yuvaraja's college, Mysuru

Department of Mathematics

Kaliappan Vijaya, Vellore Institute of Technology, Vellore

Department of Mathematics

References

P. L. Duren, Univalent functions, Grundlehren der Mathematischen

Wissenschaften, Springer, New York, 1983.

Ch. Pommerenke, On the coefficients and Hankel determinants

of univalent functions, J. Lond. Math. Soc., 41(1996), 111-122.

http://dx.doi.org/10.1112/jlms/s1-41.1.111.

A. Janteng, S.A. Halim and M. Darus, Hankel determinant for starlike

and convex functions, Int.J.Math.Anal., 13(1) (2007), 619-625.

A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a

function whose derivative has a positive real part, J. Inequal. Pure

Appl. Math., 7(2) (2006), 1-5

T. Yavuz, Second Hankel determinant for analytic functions defined

by Ruscheweyh derivative, Intern.J. Anal. Appl., 8 (2015), no.1, 63-68.

D.V. Krishna and T. Ramreddy, Hankel determinant for p-valent

starlike and convex functions of order alpha, Novi Sad J.Math., 42,

(2012), no.2, 89-96. https://dx.doi.org/10.1155/2013/348251.

S.N. Kund and A.K.Mishra, The second Hankel determinant for

a class of analytic functions associated with the Carlson-Shaffer

operator, Tamkang J. Math., 44, (2013), no.1,73-82.

F.H. Jackson, On q-functions and a certain difference

operator, TRans. Royal Soc. Edinb., 46, (1909), 253-281.

https://dx.doi.org/10.1017/S0080456800002751.

Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht,

Gottingen, 1975.

B. Simon, Orthogonal Polynomials on the unit circle, Part 1. Classical

theory, American Mathematical Society Colloquium Publications, 54, Part

, American Mathematical Society, Providence, RI, 2005.

U. Grenander and G. Szego, Toeplitz Forms and Their Applications, ¨

nd ed., Chelsea Publishing Co., New York, 1984.

T. H. Mac Gregor, Functions whose derivative have a positive

real part, Trans. Amer. Math. Soc, 104(3)(1962), 532-537.

https://dx.doi.org/10.2307/2045769.

R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse

of a function with derivative in P , proc. Amer. Math. Soc., 87(2)(1983),

-257.

https://dx.doi.org/10.1090/S0002-9939-1983-0681830-8.

D. Vamshee Krishna, B. Venkateshwarulu and T. RamReddy,

Coefficient inequality for certain subclass of p-valent analytic

functions whose reciprocal derivative has a positive real part, proc.

Amer. Math. Soc., 87(2)(2016), 87-92.

Published

20-02-2025

How to Cite

Ashwini s, Ruby Salestina M, & Kaliappan Vijaya. (2025). Second Hankel Determinant for certain Subclass of p-valent Analytic Function. Communications in Mathematics and Applications, 15(3). Retrieved from https://rgnpublications.com/journals/index.php/cma/article/view/2831

Issue

Section

Research Article