Higher-Order Numerical Technique Based on Strong Stability Preserving Method for Solving Nonlinear Fisher Equation
DOI:
https://doi.org/10.26713/cma.v15i3.2806Keywords:
Fisher’s problems, Method of lines, Finite difference methods, Strong stability preserving Runge-Kutta methodsAbstract
This paper presents higher-order numerical methods for solving nonlinear Fisher equations. These types of equations arise in various fields of sciences and engineering, the main application of this equation has been found in the biomedical sciences. The solution of this equation helps to determine the size of the brain tumor. In this paper, we have constructed the numerical method based on the method of lines and higher order strong stability preserving schemes of order three and four. These schemes are explicit in nature and easy to implement specially to solve the nonlinear problems. Due to the stability-preserving nature of the scheme, the restriction on time steps is very mild. These schemes are very practical to use and produce very accurate results. Various test problems are considered to validate the scheme along with a comparison of
Downloads
References
W. M. Abd-Elhameed, A. Ali and Y. Youssri, Newfangled linearization formula of certain nonsymmetric Jacobi polynomials: Numerical treatment of nonlinear Fisher’s equation, Journal of Function Spaces 2023(1) (2023), 6833404, DOI: 10.1155/2023/6833404.
M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for a special wave speed, Bulletin of Mathematical Biology 41 (1979), 835 – 840, DOI: 10.1007/BF02462380.
K. M. Agbavon, A. R. Appadu, B. Inan and H. M. Tenkam, Convergence analysis and approximate optimal temporal step sizes for some finite difference methods discretising Fisher’s equation, Frontiers in Applied Mathematics and Statistics 8 (2022), 921170, DOI: 10.3389/fams.2022.921170.
R. E. Baker, Mathematical Biology and Ecology Lecture Notes, University of Oxford, Oxford, UK, 92 pages (2011), https://www.math.mun.ca/~zhao/ARRMSschool/MathBioNotes2011.pdf.
M. Bastani and D. K. Salkuyeh, A highly accurate method to solve Fisher’s equation, Pramana 78 (2012), 335 – 346, DOI: 10.1007/s12043-011-0243-8.
M. Bonkile, A. Awasthi, and S. Jayaraj, A numerical implementation of higher order time integration algorithm on unsteady burgers’ equation, in: International Conference on Mathematical Modeling and Computer Simulation - 2014, pp. 1 – 10 (2014).
J. R. Branco, J. A. Ferreira and P. de Oliveira, Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Applied Numerical Mathematics 57(1) (2007), 89 – 102, DOI: 10.1016/j.apnum.2006.01.002.
V. Chandraker, A. Awasthi and S. Jayaraj, A numerical treatment of Fisher equation, Procedia Engineering 127 (2015), 1256 – 1262, DOI: 10.1016/j.proeng.2015.11.481.
G. Dattoli, E. Di Palma, E. Sabia and S. Licciardi, Quasi exact solution of the Fisher equation, Applied Mathematics 4 (2013), 7 – 12, DOI: 10.4236/am.2013.48A002.
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics 7(4) (1937), 355 – 369, DOI: 10.1111/j.1469-1809.1937.tb02153.x.
M. Gunzburger, L. Hou and W. Zhu, Modeling and analysis of the forced Fisher equation, Nonlinear Analysis: Theory, Methods & Applications 62(1) (2005), 19 – 40, DOI: 10.1016/j.na.2005.01.094.
A. C. Hindmarsh, Toward a systematized collection of ODE solvers, in: International Mathematics and Computers Simulation Congress on Systems Simulation and Scientific Computation, Montreal, Canada, 9 August 1982, Technical Report, OSTI ID: 5180574, Lawrence Livermore National Labratory, CA (USA), 1982, https://www.osti.gov/biblio/5180574.
I. Hussen and B. Mebrate, Semi implicit scheme of Fisher equation based on Crank-Nicolson method and method of lagging, Palestine Journal of Mathematics 11(3) (2022), 536 – 548, https://pjm.ppu.edu/sites/default/files/papers/PJM_May_%283%292022_536_to_548.pdf.
R. Jiwrai and R. Mittal, A higher order numerical scheme for singularly perturbed Burger-Huxley equation, Journal of Applied Mathematics and Informatics 29(3-4) (2011), 813 – 829, https://koreascience.kr/article/JAKO201121559392442.pdf.
T. Kawahara and M. Tanaka, Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation, Physics Letters A 97(8) (1983), 311 – 314, DOI: 10.1016/0375-9601(83)90648-5.
A. K. Kolmogorov, N. Petrovsky and S. Piscounov, Etude de I equations de la diffusion avec croissance de la quantitate de matiere et son application a un probolome biologique, Bull. Univ. Mosku 1 (1937), 1 – 25.
M. O. Korpusov, A. V. Ovchinnikov and A. V. Sveshnikov, On blow up of generalized Kolmogorov-Petrovskii-Piskunov equation, Nonlinear Analysis: Theory, Methods & Applications 71(11) (2009), 5724 – 5732, DOI: 10.1016/j.na.2009.05.002.
N. A. Kudryashov, Exact solitary waves of the Fisher equation, Physics Letters A 342(1-2) (2005), 99 – 106, DOI: 10.1016/j.physleta.2005.05.025.
D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM Journal on Applied Mathematics 34(1) (1978), 93 – 104, DOI: 10.1137/0134008.
W. X. Ma and B. Fuchssteiner, Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, International Journal of Non-Linear Mechanics 31(3) (1996), 329 – 338, DOI: 10.1016/0020-7462(95)00064-X.
J. E. Macías-Díaz, I. Medina-Ramírez and A. Puri, Numerical treatment of the spherically symmetric solutions of a generalized Fisher–Kolmogorov–Petrovsky–Piscounov equation, Journal of Computational and Applied Mathematics 231(2) (2009), 851 – 868, DOI: 10.1016/j.cam.2009.05.008.
R. C.Mittal and R. Jiwari, Numerical study of Fisher’s equation by using differential quadrature method, International Journal Information and Systems Science 5(1) (2009), 143 – 160.
O. Oymak and N. Selçuk, Method-of-lines solution of time-dependent two-dimensional Navier-Stokes equations, International Journal for Numerical Methods in Fluids 23(5) (1996), 455 – 466, DOI: 10.1002/(sici)1097-0363(19960915)23:5<455::aid-fld435>3.0.co;2-j.
R. A. V. Parambu, A. Awasthi, V. Vimal and N. Jha, A numerical implementation of higher-order time integration method for the transient heat conduction equation with a moving boundary based on boundary immobilization technique, AIP Conference Proceedings 2336(1) (2021), 030012, DOI: 10.1063/5.0045874.
A. D. Polyanin and A. I. Zhurov, A new method for constructing exact solutions to nonlinear delay partial differential equations, arXiv preprint, arXiv:1304.5473 (2013), DOI: 10.48550/arXiv.1304.5473.
E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Mathematische Annalen 102(1930), 650 – 670, DOI: 10.1007/bf01782368.
C.-W. Shu, Total-variation-diminishing time discretizations, SIAM Journal on Scientific and Statistical Computing 9(6) (1988), 1073 – 1084, DOI: 10.1137/0909073.
J. J. Tyson and P. K. Brazhnik, On traveling wave solutions of Fisher’s equation in two spatial dimensions, SIAM Journal on Applied Mathematics 60(2) (2000), 371 – 391, DOI: 10.1137/s0036139997325497.
A. Verma, R. Jiwari and M. E. Koksal, Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions, Advances in Difference Equations 2014 (2014), Article number: 229, DOI: 10.1186/1687-1847-2014-229.
V. Vimal, R. K. Sinha and P. Liju, An unconditionally stable numerical scheme for solving nonlinear Fisher equation, Nonlinear Engineering 13(1) (2024), 20240006, DOI: 10.1515/nleng-2024-0006.
V. Vimal, R. K. Sinha and P. Liju, Backward differentiation formula based numerical method to Solve Fisher equation, South East Asian Journal of Mathematics and Mathematical Sciences 20(2) (2024), 477 – 494, DOI: 10.56827/SEAJMMS.2024.2002.34.
V. Vimal, R. K. Sinha and L. Pannikkal, Numerical methods for solving nonlinear fisher equation using backward differentiation formula, Applications and Applied Mathematics: An International Journal 19(4) (2024), Article 4, URL: https://digitalcommons.pvamu.edu/aam/vol19/iss4/4.
N. K. Vitanov, I. P. Jordanov and Z. I. Dimitrova, On nonlinear population waves, Applied Mathematics and Computation 215(8) (2009), 2950 – 2964, DOI: 10.1016/j.amc.2009.09.041.
X. Y. Wang, Exact and explicit solitary wave solutions for the generalised fisher equation, Physics letters A 131(4-5) (1988), 277 – 279, DOI: 10.1016/0375-9601(88)90027-8.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.