Quadratic-Phase Hankel Transformation and Calder`on's Reproducing Formula

Authors

  • Chandra Roy University Department of Mathematics, Vinoba Bhave University, Hazaribag, Jharkhand, India 825301
  • Tanuj Kumar Department of Mathematics, UPES, Dehradun-248007, Uttarakhand, INDIA.
  • Akhilesh Prasad Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004
  • Govind Kumar Jha Department of Mathematics, Markham College of Commerce, Hazaribag-825301,

Keywords:

Hankel transformation, Quadratic-phase Hankel transformation, convolution, Calder`on's formula

Abstract

In this paper, we have explored fundamental properties of the quadratic-phase Hankel
transformation. Additionally, we have derived Calder`on's reproducing formula for quadratic-
phase Hankel convolution based on the theory of the quadratic-phase Hankel transformation.

Downloads

Download data is not yet available.

References

References

A. P. Calder`on, Intermediate spaces and interpolation, the complex method, Studia Math.,

:113-190, 1964. doi:10.4064/sm-24-2-113-190

C. K. Chui, An introduction to wavelets, Academic Press, London, 1992.

doi:10.2307/2153134

I. Daubechies, Ten lectures on wavelets, CBMS-NSF regional conference series in applied

mathematics, Vol. 61, SIAM, Philadelphia, 1992. doi:10.1137/1.9781611970104

L. Debnath and F. A. Shah, Wavelet transforms and their applications, Birkha ̈user, Boston,

doi:10.1007/978-0-8176-8418-1

M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of function

spaces, CBMS regional conference series in mathematics, Vol. 79, American Mathematical Society, Rhode Island, 1991.

doi:10.1090/cbms/079

A. Prasad, T. Kumar, A. Kumar, Convolution for a pair of quadratic-phase Hankel transforms. Rev. R. Acad. Cienc. Exactas F ́ıs. Nat. Ser.

A Math. RACSAM, 114, 150 (2020).doi:10.1007/s13398-020-00873-9

A. Prasad, T. Kumar, Canonical Hankel wavelet transformation and Calder`on's reproducing formula, Filomat, 32(8), 2735–2743, (2018).

doi:10.2298/FIL1808735P

R. S. Pathak and M. M. Dixit, Continuous and discrete Bessel wavelet transforms, J. Comput. Appl. Math., 160(1-2):241-250, 2003.

doi:10.1016/S0377-0427(03)00626-5

R. S. Pathak and G. Pandey, Calder`on's reproducing formula for Hankel convolution, Int. J. Math. Math. Sci., 2006 Art. ID. 24217 (7

pages), 2006. doi:10.1155/IJMMS/2006/24217

S. K. Upadhyay and R. Singh, Integrability of the continuum Bessel wavelet kernel, Int. J. Wavelets Multiresolut. Inf. Process. 13(05),

Art. ID. 1550032 (13 pages) 2015. doi:10.1142/S0219691315500320

S. K. Upadhyay and A. Tripathi, Calder`on's reproducing formula for Watson wavelet

transform, Indian J. Pure Appl. Math., 46(3):269-277, 2015. doi:10.1007/s13226-015-0137-4

M. A. Pinsky, Integrability of the continuum wavelet kernel, Proc. Amer. Math. Soc., 132(6):1729-1737, 2003. doi:10.1090/S0002-9939-

-07253-8

Published

14-11-2024

How to Cite

Roy, C., Kumar, T. ., Prasad, A. ., & Jha, G. K. (2024). Quadratic-Phase Hankel Transformation and Calder`on’s Reproducing Formula. Communications in Mathematics and Applications, 15(2). Retrieved from https://rgnpublications.com/journals/index.php/cma/article/view/2790

Issue

Section

Research Article