Effect of Binary Hybrid Nanofluid Flow Between Parallel Plates With Applied Activation Energy
DOI:
https://doi.org/10.26713/cma.v15i2.2744Keywords:
Hybrid nanofluid, Activation energy, Brownian motion, Thermophoresis, Flow between two plates, Two phase nanofluid modelAbstract
This article examines the activation energy between two parallel plates consisting of MoS\(_2\)-GO-EO hybrid nanofluid. The nanoparticles, molybdenum disulphide (MoS\(_2\)) and graphene oxide (GO), are added to the base fluid, engine oil (EO). The influence of activation energy is also measured in this model. The finite difference method (FDM) is used to integrate the equations of motion, heat, and mass balance. The effects of important parameters such as activation energy, chemical reaction, temperature difference, random motion, and thermophoresis are discussed. The Nusselt number and skin friction are compared with available work to validate the numerical procedure. An enhanced Sherwood number is observed in Buongiorno's nanofluid model, while an elevated Nusselt number is seen with the hybrid nanofluid. Activation energy increases the profiles of temperature and concentration.
Downloads
References
H. M. Ali, Hybrid Nanofluids for Convection Heat Transfer, 1st edition, Academic Press, London, 300 pages (2020), DOI: 10.1016/C2018-0-04602-2.
M. A. Ahmed, M. M. Yaseen and M. Z. Yusoff, Numerical study of convective heat transfer from tube bank in cross flow using nanofluid, Case Studies in Thermal Engineering 10 (2017), 560 – 569, DOI: 10.1016/j.csite.2017.11.002.
A. O. Ali and O. D. Makinde, Modelling the effect of variable viscosity on unsteady Couette flow of nanofluids with convective cooling, Journal of Applied Fluid Mechanics 8(4) (2015), 793 – 802, DOI: 10.18869/acadpub.jafm.67.223.22967.
K. Ali, Y. R. Reddy and B. C. Shekar, Thermo-fluidic transport process in magnetohydrodynamic Couette channel containing hybrid nanofluid, Partial Differential Equations in Applied Mathematics 7 (2023), 100468, DOI: 10.1016/j.padiff.2022.100468.
S. Arrhenius, Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Zeitschrift für Physikalische Chemie 4U(1) (1889), 226 – 248, DOI: 10.1515/zpch-1889-0416.
A. R. Bestman, Natural convection boundary layer with suction and mass transfer in a porous medium, International Journal of Energy Research 14 (1990), 389 – 396, DOI: 10.1002/er.4440140403.
N. Biswas, N. K. Manna, P. Datta and P. S. Mahapatra, Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu-water nanoflui, Powder Technology 326 (2018), 356 – 369, DOI: 10.1016/j.powtec.2017.12.030.
J. Bodduna, M. P. Mallesh, C. S. Balla and S. A. Shehzad, Activation energy process in bioconvection nanofluid flow through porous cavity, Journal of Porous Media 25(4) (2022), 37 – 51, DOI: 10.1615/JPorMedia.2022040230.
J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat and Mass Transfer 128(3) (2006), 240 – 250, DOI: 10.1115/1.2150834.
S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Technical Report ANL/MSD/CP-84938, CONF-951135-29, Argonne National Lab., Lemont, IL, USA (1995), URL: https://ecotert.com/pdf/196525_From_unt-edu.pdf.
M. Ghalambaz, A. Doostani, E. Izadpanahi and A. J. Chamkha, Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity, Journal of Thermal Analysis and Calorimetry 139 (2020), 2321 – 2336, DOI: 10.1007/s10973-019-08617-7.
R. S. R. Gorla, B. Vasu and S. Siddiqa, Transient combined convective heat transfer over a stretching surface in a non-newtonian nanofluid using Buongiorno’s model, Journal of Applied Mathematics and Physics 4(2) (2016), 443 – 460, DOI: 10.4236/jamp.2016.42050.
M. R. Hajmohammadi, Cylindrical Couette flow and heat transfer properties of nanofluids; single-phase and two-phase analyses, Journal of Molecular Liquids 240 (2017), 45 – 55, DOI: 10.1016/j.molliq.2017.05.043.
G. Huminic and A. Huminic, Hybrid nanofluids for heat transfer applications – A stateof-the-art review, International Journal of Heat and Mass Transfer 125 (2018), 82 – 103, DOI: 10.1016/J.IJHEATMASSTRANSFER.2018.04.059.
M. E. Karim, M. A. Samad and M. Ferdows, Numerical study of the effect of variable viscosity on unsteady pulsatile nanofluid flow through a Couette channel of stretching wall with convective heat transfer, AIP Conference Proceedings 2121(1) (2019), 070005, DOI: 10.1063/1.5115912.
K. Khanafer and K. Vafai, Applications of nanofluids in porous medium, Journal of Thermal Analysis and Calorimetry 135 (2019), 1479 – 1492, DOI: 10.1007/s10973-018-7565-4.
D. Madhesh, R. Parameshwaran and S. Kalaiselvam, Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids, Experimental Thermal and Fluid Science 52 (2014), 104 – 115, DOI: 10.1016/j.expthermflusci.2013.08.026.
M. Mahmoodi and S. Kandelousi, Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation, Journal of Molecular Liquids 211 (2015), 15 – 24, DOI: 10.1016/j.molliq.2015.06.057.
O. D. Makinde and O. Franks, On MHD unsteady reactive Couette flow with heat transfer and variable properties, Central European Journal of Engineering 4 (2014), 54 – 63, DOI: 10.2478/s13531-013-0139-0.
O. Manca, S. Nardini and D. Ricci, A numerical study of nanofluid forced convection in ribbed channels, Applied Thermal Engineering 37 (2012), 280 – 292, DOI: 10.1016/j.applthermaleng.2011.11.030.
V. Meenakshi, J. Bodduna, M. P. Mallesh and C. S. Balla, Impact of Brownian motion and thermophoresis on entropy generation in a cavity containing microorganisms, International Journal for Computational Methods in Engineering Science and Mechanics 24(4) (2023), 258 – 272, DOI: 10.1080/15502287.2023.2185554.
S. Y. Motlagh and H. Soltanipour, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model, International Journal of Thermal Sciences 111 (2017), 310 – 320, DOI: 10.1016/j.ijthermalsci.2016.08.022.
M. Mustafa, T. Hayat and S. Obaidat, Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions, International Journal of Numerical Methods for Heat & Fluid Flow 23(6) (2013), 945 – 959, DOI: 10.1108/HFF-09-2011-0179.
G. Saha and M. C. Paul, Investigation of the characteristics of nanofluids flow and heat transfer in a pipe using a single phase model, International Communications in Heat and Mass Transfer 93 (2018), 48 – 59, DOI: 10.1016/j.icheatmasstransfer.2018.03.001.
M. Sheikholeslami, D. D. Ganji and M. M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, Journal of Magnetism and Magnetic Materials 416 (2016), 164 – 173, DOI: 10.1016/j.jmmm.2016.05.026.
M. A. Sheremet and I. Pop, Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model, Computers & Fluids 118 (2015), 182 – 190, DOI: 10.1016/j.compfluid.2015.06.022.
M. A. Sheremet, I. Pop and M. M. Rahman, Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model, International Journal of Heat and Mass Transfer 82 (2015), 396 – 405, DOI: 10.1016/j.ijheatmasstransfer.2014.11.066.
N. A. C. Sidik, I. M. Adamu, M. M. Jamil, G. H. R. Kefayati, R. Mamat and G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review, International Communications in Heat and Mass Transfer 78 (2016), 68 – 79, DOI: 10.1016%2Fj.icheatmasstransfer.2016.08.019.
L. S. Sundar, M. K. Singh and A. C. Sousa, Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids, International Communications in Heat and Mass Transfer 52 (2014), 73 – 83, DOI: 10.1016/j.icheatmasstransfer.2014.01.012.
R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, International Journal of Heat and Mass Transfer 50(9-10) (2007), 2002 – 2018, DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
I. Tlili, N. N. Hamadneh, W. A. Khan and S. Atawneh, Thermodynamic analysis of MHD Couette–Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects, Journal of Thermal Analysis and Calorimetry 132 (2018), 1899 – 1912, DOI: 10.1007/s10973-018-7066-5.
A. Zeeshan, N. Shehzad and R. Ellahi, Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions, Results in Physics 8 (2018), 502 – 512, DOI: 10.1016/j.rinp.2017.12.024.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.