Coefficient Problems on bi-univalent functions with (p,q) -Gegenbauer polynomials

Authors

Abstract

In this paper our main aim is to study the new subclasses of biunivalent functions and to obtain initial coefficient bounds of starlike and convex biunivalent functions involving (p,q) - Gegenbauer polynomials. Also we aim at obtaining sharp bound for Fekete-Szego functional.

Downloads

Download data is not yet available.

Author Biography

Ruby Salestina M, Yuvaraja's College, Mysore

Professor, Department of Mathematics, Yuvaraja's College, Mysore, University of Mysore

References

A. Alamoush, A subclass of pseudo-type meromorphic bi-univalent functions, Communica

tions Faculty of Sciences University of Ankara Series A1 Math. and Stat. 69(2), (2020),31

, doi:10.1007/978-981-19-9307-7 25.

B. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, App. Maths. Lt., 24(9),

(2011),15691573, doi:10.1016/j.aml.2011.03.048.

Ch. Pommerenke,

gen,

(3),

Univalent Functions, Vandenhoeck and Rupercht, Gttin

(1975),532-537,

functions/oclc/605236424.

URL: https://search.worldcat.org/title/univalent

D.A. Brannan and J.G. Clunie, Aspects of Contemporary Complex Analysis, Proceedings

of the NATO Advanced study Institute,Academic press,New York and London, (1979),

doi:10.1112/blms/14.4.382.

D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions ,in: S.M. Mazhar, A.

Hamoui, N.S. Faour (Eds.), Math. Anal. Appl., Kuwait , (1985),18-21, doi:10.1016/B978

-08-031636-9.50012-7.

H. Orhan, P.K. Mamatha, S.R. Swamy , N. Magesh and J. Yamini, Jagudeeshan, Certain

classes of bi-univalent functions associated with the Horadam polynomials, Acta Universi

tatis Sapientiae Mathematica, 13, (2021),258-272, doi:10.2478/ausm-2021-0015.

H. Orhan, N. Magesh, and V. Balaji, Second Hankel determinant for certain class of bi

univalent functions de ned by Chebyshev polynomials,Asian-Eur. J. Math., 12(02), 1950017

(2019), doi:10.1142/S1793557119500177.

H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic

and bi-univalent functions, Applied Mathematics Letters 23, (2010), 1188-1192,

doi:10.1016/j.aml.2010.05.009.

K. Kiepiela, I. Naraniecka, and J. Szynal, The Gegenbauer polynomials and typically real

functions, J.Comput. Appl. Math. , 153, (2003),273-282, doi:10.1016/S0377-0427(02)00642

L. de Branges, A proof of the Bieberbach Conjecture, Acta Math.,154, (1985),137-152,

doi:10.1007/BF02392821.

M. Lewin, On a coe cient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18,

(1967),63-68, doi:10.1090/S0002-9939-1967-0206255-1.

N. Magesh, A. Motamednezhad and S. Salehian, Certain subclass of bi-univalent func

tions associated with the chebyshev polynomials based on q-derivative and symmetric

q-derivative , Bull. Transilv. Univ. Braov, Ser. III Math., 13(62), (2020),163-176,

doi:10.32513/tbilisi/1561082575.

N. Magesh, C. Abirami, S. Altnkaya, Initial bounds for certain classes of bi-univalent

functions de ned by the (p,q)-lucas polynomials,TWMS J. of Apl. and Eng. Math., 11,

(2021),282-288, URL: https://hdl.handle.net/11729/3071.

N. Magesh, and S. Bulut, Chebyshev polynomial coe cient estimates for a class of an

alytic bi-univalent functions related to pseudo-starlike functions, Afrika Matematika, 29,

(2018),203-209,doi:10.1007/s13370-017-0535-3.

P.L. Duren, Univalent functions, , Grundlehren Math. Wiss., Springer,Vol. 259, USA, 1983,

URL: https://books.google.co.in/books?id=iYG5QgAACAAJ.

R. Chakrabart , R. Jagannathan, A (p, q)-oscillator realization of two-parameter quan

tum algebras. J. Phys. A, Math. Gen. 24 (13), (1991), 1188-1192,doi:10.1088/0305

/24/13/002.

S. Miller and P. Mocanu, Di erential Subordination: theory and applications, CRC Press,

New York, 2000, doi:10.1201/9781482289817.

T.S. Taha, Topics in Univalent Function Theory ,Ph.D. Thesis, University of London,

(1981), URL: https://www.sciencedirect.com/science/article/pii/S0893965911001583

Published

20-02-2025

How to Cite

Govinda Raju R, Ruby Salestina M, & N B Gatti. (2025). Coefficient Problems on bi-univalent functions with (p,q) -Gegenbauer polynomials. Communications in Mathematics and Applications, 15(3). Retrieved from https://rgnpublications.com/journals/index.php/cma/article/view/2742

Issue

Section

Research Article