Decomposition of Bipolar Pythagorean Fuzzy Matrices

Authors

DOI:

https://doi.org/10.26713/cma.v15i2.2739

Keywords:

Intuitionistic fuzzy matrix, Bipolar pythagorean fuzzy matrix, Modal operator

Abstract

This paper presents novel findings on modal operators through the use of max-min composition, analyzing properties such as reflexivity, symmetry, transitivity, and idempotency related to necessity and possibility. It explores the necessary and sufficient conditions for transitive and \(c\)-transitive closure matrices using modal operators. Additionally, a new composition operator, labeled as `\(\wedge_{m}\)' is introduced and its algebraic properties are thoroughly discussed. The study also achieves a decomposition of a BPyFM utilizing the new composition operator and modal operators.

Downloads

Download data is not yet available.

References

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

M. Bhowmik and M. Pal, Generalized intuitionistic fuzzy matrices, Far East Journal of Mathematical Sciences 29(3) (2008), 533 – 554.

H. Bustince and P. Burillo, Structure on intuitionistic fuzzy relations, Fuzzy Sets and Systems 78(3) (1996), 293 – 303, DOI: 10.1016/0165-0114(96)84610-0.

V. Chinnadurai, G. Thirumurugan and M. Umamaheswari, Novel operations in bipolar pythagorean fuzzy matrices, International Journal of Advanced Science and Technology 29(4) (2020), 5387 – 5401, URL: http://sersc.org/journals/index.php/IJAST/article/view/25979.

D. Ezhilmaran and K. Sankar, Morphism of bipolar intuitionistic fuzzy graphs, Journal of Discrete Mathematical Science and Cryptography 18(5) (2015), 605 – 621, DOI: 10.1080/09720529.2015.1013673.

H. Hashimoto, Decomposition of fuzzy matrices, SIAM Journal of Algebraic and Discrete Methods 6(1) (1985), 32 – 38, DOI: 10.1137/0606003.

N. G. Jeong and S. W. Park, The equivalence intuitionistic fuzzy matrix and idempotent, Far East Journal of Mathematical Sciences 11(3) (2003), 355 – 365.

K. H. Kim and R. W. Roush, Generalized fuzzy matrices, Fuzzy Sets and System 4(3) (1980), 293 – 315, DOI: 10.1016/0165-0114(80)90016-0.

H.-Y. Lee and N.-G. Jeong, Canonical form of an transitive intuitionistic fuzzy matrices, Honam Mathematical Journal 27(4) (2005), 543 – 550, URL: https://koreascience.kr/article/JAKO200510102453756.page.

S. Mondal and M. Pal, Similarity relations, invertibility and eigenvalues of intuitionistic fuzzy matrix, Fuzzy Information and Engineering 5(4) (2013), 431 – 443, DOI: 10.1007/s12543-013-0156-y.

P. Murugadas and K. Lalitha, Decomposition of an intuitionistic fuzzy matrices using implication operators, Annals of Fuzzy Mathematics and Informatics 11(1) (2016), 11 – 18, URL: http://www.afmi.or.kr/papers/2016/Vol-11_No-01/PDF/AFMI-11-1(11-18)-H-150309R2.pdf.

T. Muthuraji, S. Sriram and P. Murugadas, Decomposition of intuitionistic fuzzy matrices, Fuzzy Information and Engineering 8(3) (2016), 345 – 354, DOI: 10.1016/j.fiae.2016.09.003.

M. Pal, S. Khan and A. K. Shyamal, Intuitionistic fuzzy matrices, Notes on Intuitionistic Fuzzy Sets 8(2) (2002), 51 – 62, URL: https://ifigenia.org/images/2/24/NIFS-08-2-51-62.pdf.

M. G. Thomason, Convergence of powers of fuzzy matrix, Journal of Mathematical Analysis and Applications 57(2) (1977), 476 – 480, DOI: 10.1016/0022-247X(77)90274-8.

Z. Xu, Intuitionistic Fuzzy Aggregation and Clustering, Studies in Fuzziness and Soft Computing series, Springer, Berlin — Heidelberg, ix + 278 pages (2012), DOI: 10.1007/978-3-642-28406-9.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

14-11-2024
CITATION

How to Cite

Sriram, S., & Sivaranjani, K. (2024). Decomposition of Bipolar Pythagorean Fuzzy Matrices. Communications in Mathematics and Applications, 15(2), 829–843. https://doi.org/10.26713/cma.v15i2.2739

Issue

Section

Research Article