Applications of Linear Differential Operator on Varying Arguments

Authors

  • S. Annapoorna Department of Mathematics, Vidyavardhaka College of Engineering (affiliated to Visvesvaraya Technological University), Mysuru 570002, Karnataka, India https://orcid.org/0009-0004-4658-7107
  • L. Dileep Department of Mathematics, Vidyavardhaka College of Engineering (affiliated to Visvesvaraya Technological University), Mysuru 570002, Karnataka, India https://orcid.org/0000-0002-1059-0118

DOI:

https://doi.org/10.26713/cma.v15i2.2735

Keywords:

Al-Oboudi q-differential operator, Univalent functions, Analytic functions and Carlson-Shaffer operator, Linear operator

Abstract

In the present work, using Al-Oboudi operator and Carlson-Shaffer operator, we introduce a new Linear operator \(\mathcal{AS}_{\lambda, q}^{\delta}\). The objective is to define the new subclasses of analytic functions \(\mathcal{VS}_{\lambda,\delta}^{\alpha, \beta} (a,c,n; q)\), \(\mathcal{VS}_{\lambda,\delta}^{\alpha}(a,c,n;q) \) using the above linear operator and for functions belonging to these classes we obtain coefficient estimates and many more related properties like extreme points, integral means, unified radii results etc.

Downloads

Download data is not yet available.

References

H. S. Al-Amiri, On Ruscheweyh derivatives, Annales Polonici Mathematici 38 (1980), 87 – 94, DOI: 10.4064/ap-38-1-88-94.

F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, International Journal of Mathematics and Mathematical Sciences 2004(27) (2004), 1429 – 1436, DOI: 10.1155/S0161171204108090.

B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM Journal on Mathematical Analysis 15(4) (1984), 737 – 745, DOI: 10.1137/0515057.

L. Dileep and S. Latha, A note on Salagean-Carlson-Shaffer operator, International Journal of Mathematical Archive 2(2) (2011), 272 – 279, URL: www.ijma.info/index.php/ijma/article/view/138/57.

L. Dileep and S. Latha, Certain subclasses of analytic functions involving Salagean-Ruscheweyh operator, Vietnam Journal of Mathematics 38(4) (2010), 403 – 412, URL: http://www.math.ac.vn/publications/vjm/VJM_38/403.htm.

L. Dileep and M. Rajeev, Convolution operators in geometric function theory, GIS Science Journal 7(7) (2020), 473 – 483.

S. M. Khairnar and M. More, On a certain subclasses of analytic functions involving the Al-Oboudi differential operator, Journal of Inequalities in Pure & Applied Mathematics 10(2) (2009), Article number 57, 11 pages, URL: https://eudml.org/doc/130331.

J. E. Littlewood, On inequalities in theory of functions, Proceedings of the London Mathematical Society s2-23(1) (1925), 481 – 519, DOI: 10.1112/plms/s2-23.1.481.

H. Orhan and E. Güne¸s, Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions, Indian Journal of Mathematics 51(3) (2009), 489 – 510.

K. S. Padmanabhan and M. Jayamala, A class of univalent functions with varying arguments, International Journal of Mathematics and Mathematical Sciences 15(3) (1992), 517 – 522, DOI: 10.1155/s016117129200067x.

S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society 49 (1975), 109 – 115, DOI: 10.1090/s0002-9939-1975-0367176-1.

H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain Journal of Mathematics 21(3) (1991), 1099 – 1125, DOI: 10.1216/rmjm/1181072932.

H. Silverman, Integral means for univalent functions with negative coefficients, Houston Journal of Mathematics 23(1) (1997), 169 – 174.

H. Silverman, Univalent functions with negative coefficients, Proceedings of the American Mathematical Society 51 (1975), 109 – 116, DOI: 10.1090/S0002-9939-1975-0369678-0.

H. Silverman, Univalent functions with varying arguments, Houston Journal of Mathematics 7(2) (1981), 283 – 287.

G. S. Salagean, Subclasses of univalent functions, in: Complex Analysis: Fifth Romanian-Finnish Seminar, Part I Bucharest, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, (1981).

K. Vijaya and G. Murugusundaramoorthy, Some uniformly stralike functions with varying arguments, Tamkang Journal of Mathematics 35(1) (2004), 23 – 28, DOI: 10.5556/j.tkjm.35.2004.222.

P. Yadav and S. S. Kumar, Partial sums for a generalised class of analytic functions, The Journal of Analysis 32 (2024), 2245 – 2264, DOI: 10.1007/s41478-023-00699-9.

Downloads

Published

14-11-2024
CITATION

How to Cite

Annapoorna, S., & Dileep, L. (2024). Applications of Linear Differential Operator on Varying Arguments. Communications in Mathematics and Applications, 15(2), 791–799. https://doi.org/10.26713/cma.v15i2.2735

Issue

Section

Research Article