A Second-Order Numerical Approximation for Volterra-Fredholm Integro-Differential Equations with Boundary Layer and an Integral Boundary Condition

A Second-Order Numerical Approximation

Authors

Keywords:

Singular perturbation; Integro-differential equation; Finite difference methods; Piecewise uniform mesh; Uniform convergent

Abstract

This study introduces a novel second-order computational technique to
effectively tackle Volterra Fredholm integro-differential equations, which
are characterized by integral conditions and boundary layers. Initially,
some analytical properties of the solution are given. Then, the approach
involves implementing a finite difference scheme on the piece-wise uniform
mesh (Shishkin-type mesh). It integrates a composite trapezoidal formula for
the integral component and utilizes interpolating quadrature rules and
linear exponential basis functions for the differential part. The analysis
of the method demonstrates that both the numerical scheme and its
convergence rate exhibit second-order accuracy, ensuring uniform convergence
with respect to the small parameter in the discrete maximum norm. Finally,
two test examples are given.

Downloads

Download data is not yet available.

Author Biography

Musa Cakir, Van Yuzuncu Yil University

Faculty of Art and Science, Department of Mathematics

 

References

S. Matthews, E. O’Riordan and G. I. Shishkin, A numerical method for a system of singularly perturbed reaction–diffusion equations, Journal of Computational and Applied Mathematics 145 (2002), 151 – 166, doi:10.1016/S0377-0427(01)00541-6.

S. Nemati, Numerical solution of Volterra-Fredholm integral equations using Legendre collocation

method, Journal of Computational and Applied Mathematics 278 (2015), 29 – 36,

doi:10.1016/j.cam.2014.09.030.

A. M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, Higher

Education Press, Saint Xavier University (2011), Chicago.

M. Cakir and B. Gunes, A new difference method for the singularly perturbed Volterra-

Fredholm integro-differential equations on a Shishkin mesh, Hacettepe Journal of Mathematics

& Statistics 51 (2022), 787 – 799, doi:10.15672/hujms.950075.

K. Maleknejad, I. N. Khalilsaraye and M. Alizadeh, On the solution of the integrodifferential

equation with an integral boundary condition, Numerical Algorithms 65 (2014),

– 374, doi:10.1007/s11075-013-9709-8.

M. Cakir and G. Amiraliyev, A Numerical Method for a Singularly Perturbed Three-

Point Boundary Value Problem, Journal of Applied Mathematics 9 (2010), 1 – 17,

doi:10.1155/2010/495184.

L. G. Harrison, Kinetic Theory of Living Pattern, Cambridge University Press (1993),

doi:10.1017/CBO9780511529726.

Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer (2000),

Berlin, doi:10.1007/978-3-662-04177-2.

J. B. Munyakazi and K. C. Patidar, A new fitted operator finite difference method to solve systems of evolutionary reaction-diffusion equations, Quaestiones Mathematicae 38 (2015), 121 – 138, doi:10.2989/16073606.2014.981708.

E. Cimen and G. M. Amiraliyev, Convergence analysis of approximate method for a singularly perturbed differential-difference, Journal of Mathematical Analysis 10 (2019), 23 –37.

M. E. Durmaz, I. Amirali and G. M. Amiraliyev, An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition,

Journal of Applied Mathematics and Computing 69 (2023), 505 – 528, doi:10.1007/s12190-

-01757-4.

M. E. Durmaz, A numerical approach for singularly perturbed reaction diffusion type

Volterra-Fredholm integro-differential equations, Journal of Applied Mathematics and Computing 69 (2023), 3601 – 3624, doi:10.1007/s12190-023-01895-3.

H. Meinhardt, Models of Biological Pattern Formation, Academic Presss 21 (1982), London.

M. K. Kadalbajoo and V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Applied Mathematics and Computation 217 (2010), 3641 – 3716, doi:10.1016/j.amc.2010.09.059.

J. D. Murray, Mathematical Biology., Springer Verlag (1993).

M. Cakir and B. Gunes, Exponentially fitted difference scheme for singularly perturbed

mixed integro-differential equations, Georgian Mathematical Journal 29 (2022), doi:10.1515/gmj-2021-2130..

B. Gunes and H. Duru, A Computational Method for the Singularly Perturbed Delay Pseudo-Parabolic Differential Equations on Adaptive Mesh, International Journal of Computer Mathematics 100 (2023), 1667 – 1682, doi:10.1080/00207160.2023.2208681.

G. M. Amiraliyev, M. E. Durmaz and M. Kudu, Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation, Bulletin of the Belgian Mathematical Society-Simon Stevin 27 (2020), 71 – 88, doi:10.36045/bbms/1590199305.

Published

20-02-2025

How to Cite

GURMAN, F., & Cakir, M. (2025). A Second-Order Numerical Approximation for Volterra-Fredholm Integro-Differential Equations with Boundary Layer and an Integral Boundary Condition: A Second-Order Numerical Approximation . Communications in Mathematics and Applications, 15(3). Retrieved from https://rgnpublications.com/journals/index.php/cma/article/view/2707

Issue

Section

Research Article