Lacunary Statistical Convergence of Order α for Generalized Difference Sequences in Linear Partial Metric Space

Authors

DOI:

https://doi.org/10.26713/cma.v15i3.2691

Keywords:

Difference sequence spaces, Lacunary statistical convergence, Partial metric space, Modulus function

Abstract

In the present study, with the use of generalized difference operator Δp, we have the notion of Δp-lacunary statistical φ-convergence and Δp-lacunary strongly φ-Cesàro summability of order α, in partial metric space (X,φ), where φ is a partial metric on X. We also analyse these notions with the fusion of modulus function. In addition we also establish some relationship between these concepts.

Downloads

References

E. Bayram, Ç. Bekta¸s and Y. Altın, On statistical convergence of order α in partial metric spaces, Georgian Mathematica Journal 31(4) (2024), 557 – 565, DOI: 10.1515/gmj-2023-2116.

V. K. Bhardwaj and I. Bala, On lacunary generalized difference sequence spaces defined by Orlicz functions in a seminormed space and Δmq-lacunary statistical convergence, Demonstratio Mathematica 41(2) (2008), 415 – 424, DOI: 10.1515/dema-2008-0217.

P. Bhardwaj and M. Kumar, Fixed point theorems for mappings satisfying implicit relation in partial metric spaces, Asian Research Journal of Mathematics 18(11) (2022), 261 – 270, DOI: 10.9734/arjom/2022/v18i11600.

V. K. Bhardwaj, S. Gupta, S. A. Mohiuddine and A. Kılıçman, On lacunary statistical boundedness, Journal of Inequalities and Applications 2014 (2014), Article number: 311, DOI: 10.1186/1029-242x-2014-311.

R. C. Buck, Generalized asymptotic density, American Journal of Mathematics 75(2) (1953), 335 – 346, DOI: 10.2307/2372456.

J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canadian Mathematical Bulletin 32(2) (1989), 194 – 198, DOI: 10.4153/cmb-1989-029-3.

J. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8(1-2) (1988), 47 – 64, DOI: 10.1524/anly.1988.8.12.47.

M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal of Mathematics 21(4) (1995), 377 – 386.

H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2(3-4) (1951), 241 – 244, DOI: 10.4064/cm-2-3-4-241-244.

A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro-type summability spaces, Proceedings of the Londan Mathematical Society s3-37(3) (1978), 508 – 520, DOI: 10.1112/plms/s3-37.3.508.

J. A. Fridy, On statistical convergence, Analysis 5(4) (1985), 301 – 314, DOI: 10.1524/anly.1985.5.4.301.

J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific Journal of Mathematics 160(1) (1993), 43 – 51, DOI: 10.2140/pjm.1993.160.43.

J. A. Fridy and C. Orhan, Lacunary statistical summability, Journal of Mathematical Analysis and Applications 173(2) (1993), 497 – 504, DOI: 10.1006/jmaa.1993.1082.

S. Gupta and V. K. Bhardwaj, On deferred f -statistical convergence, Kyungpook Mathematical Journal 58(1) (2018), 91 – 103, DOI: 10.5666/KMJ.2018.58.1.91.

H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.

J. Li, Lacunary statistical convergence and inclusion properties between lacunary methods, International Journal of Mathematics and Mathematical Sciences 23(3) (2000), 175 – 180, DOI: 10.1155/s0161171200001964.

I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge (1970), DOI: 10.1002/bimj.19700120325.

S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728(1) (1994), 183 – 197, DOI: 10.1111/j.1749-6632.1994.tb44144.x.

S. A. Mohiuddine and M. Aiyub, Lacunary statistical convergence in random 2-normed spaces, Applied Mathematics & Information Sciences 6(3) (2012), 581 – 585, URL: https://www.naturalspublishing.com/download.asp?ArtcID=1025.

S. A. Mohiuddine and M. A. Alghamdi, Statistical summability through a lacunary sequence in locally solid Riesz spaces, Journal of Inequalities and Applications 2012 (2012), Article number: 225, DOI: 10.1186/1029-242x-2012-225.

H. Nakano, Concave modulars, Journal of the Mathematical Society of Japan 5(1) (1953), 29 – 49, DOI: 10.2969/jmsj/00510029

S. J. O. Neil, Two Topologies Are Better Than One, Department of Computer Science Research Report, CS-RR-283, Department of Computer Science, University of Warwick (1995).

I. Niven and H. S. Zuckerman, An Introduction to Theory of Numbers, 4th edition, John Willey & Sons, New York, 356 pages (1980).

F. Nuray, Statistical convergence in partial metric spaces, Korean Journal of Mathematics 30(1) (2022), 155 – 160, DOI: 10.11568/kjm.2022.30.1.155.

S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus, Mathematica Slovaca 45(3) (1995), 275 – 280, URL: http://eudml.org/doc/31887.

D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian Journal of Pure and Applied Mathematics 25 (1994), 381.

W. H. Ruckle, Sequence Spaces, Pitman Advanced Publishing Program, 198 pages (1981).

T. Šalát, On statistically convergent sequences of real numbers, Mathematica Slovaca 30(2) (1980), 139 – 150, URL: https://eudml.org/doc/34081.

B. Samet, C. Vetro and F. Vetro, From metric to partial metric spaces, Fixed Point Theory and Applications 2013 (2013), Article number: 5, DOI: 10.1186/1687-1812-2013-5.

I. J. Schoenberg, The integrability of certain functions and related summability methods, The American Mathematical Monthly 66(5) (1959), 361 – 775, DOI: 10.2307/2308747.

H. ¸ Sengül and M. Et, On lacunary statistical convergence of order α, Acta Mathematica Scientia 34(2) (2014), 473 – 482, DOI: 10.1016/s0252-9602(14)60021-7.

N. Sharma and S. Kumar, Statistical convergence and Cesàro summability of difference sequences relative to modulus function, Journal of Classical Analysis 23(1) (2024), 51 – 62, DOI: 10.7153/jca-2024-23-05.

H. Steinhaus, Sur la Convergence Ordinaire et la Convergence Asymptotique, Colloquium Mathematicum 2(1) (1951), 73 – 74.

B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bulletin of the Malaysian Mathematical Sciences Society 20(1) (1997), 31 – 33.

B. C. Tripathy and A. Baruah, Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Mathematical Journal 50 (2010), 565 – 574, DOI: 10.5666/kmj.2010.50.4.565.

B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δ-statistical convergence, Analelestiintifice ale Universitatii “Ovidius” Constan¸ta. Seria Matematic˘a 20(1) (2012), 417 – 430, DOI: 10.2478/v10309-012-0028-1.

B. C. Tripathy, B. Hazarika and B. Choudhary, Lacunary I-convergent sequences, Kyungpook Mathematical Journal 52(4) (2012), 473 – 482, DOI: 10.5666/kmj.2012.52.4.473.

A. Zygmund, Trigonometric Series, 3rd edition, Cambridge University Press, Cambridge, xxvi + 756 pages (2003), DOI: 10.1017/CBO9781316036587.

Downloads

Published

30-11-2024
CITATION

How to Cite

Kumar, M., Ritu, & Gupta, S. (2024). Lacunary Statistical Convergence of Order α for Generalized Difference Sequences in Linear Partial Metric Space. Communications in Mathematics and Applications, 15(3), 981–995. https://doi.org/10.26713/cma.v15i3.2691

Issue

Section

Research Article