Lacunary Statistical Convergence of Order for Generalized Difference Sequences in Linear Partial Metric Space
DOI:
https://doi.org/10.26713/cma.v15i3.2691Keywords:
Difference sequence spaces, Lacunary statistical convergence, Partial metric space, Modulus functionAbstract
In the present study, with the use of generalized difference operator
Downloads
References
E. Bayram, Ç. Bekta¸s and Y. Altın, On statistical convergence of order α in partial metric spaces, Georgian Mathematica Journal 31(4) (2024), 557 – 565, DOI: 10.1515/gmj-2023-2116.
V. K. Bhardwaj and I. Bala, On lacunary generalized difference sequence spaces defined by Orlicz functions in a seminormed space and Δmq-lacunary statistical convergence, Demonstratio Mathematica 41(2) (2008), 415 – 424, DOI: 10.1515/dema-2008-0217.
P. Bhardwaj and M. Kumar, Fixed point theorems for mappings satisfying implicit relation in partial metric spaces, Asian Research Journal of Mathematics 18(11) (2022), 261 – 270, DOI: 10.9734/arjom/2022/v18i11600.
V. K. Bhardwaj, S. Gupta, S. A. Mohiuddine and A. Kılıçman, On lacunary statistical boundedness, Journal of Inequalities and Applications 2014 (2014), Article number: 311, DOI: 10.1186/1029-242x-2014-311.
R. C. Buck, Generalized asymptotic density, American Journal of Mathematics 75(2) (1953), 335 – 346, DOI: 10.2307/2372456.
J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canadian Mathematical Bulletin 32(2) (1989), 194 – 198, DOI: 10.4153/cmb-1989-029-3.
J. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8(1-2) (1988), 47 – 64, DOI: 10.1524/anly.1988.8.12.47.
M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal of Mathematics 21(4) (1995), 377 – 386.
H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2(3-4) (1951), 241 – 244, DOI: 10.4064/cm-2-3-4-241-244.
A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro-type summability spaces, Proceedings of the Londan Mathematical Society s3-37(3) (1978), 508 – 520, DOI: 10.1112/plms/s3-37.3.508.
J. A. Fridy, On statistical convergence, Analysis 5(4) (1985), 301 – 314, DOI: 10.1524/anly.1985.5.4.301.
J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific Journal of Mathematics 160(1) (1993), 43 – 51, DOI: 10.2140/pjm.1993.160.43.
J. A. Fridy and C. Orhan, Lacunary statistical summability, Journal of Mathematical Analysis and Applications 173(2) (1993), 497 – 504, DOI: 10.1006/jmaa.1993.1082.
S. Gupta and V. K. Bhardwaj, On deferred f -statistical convergence, Kyungpook Mathematical Journal 58(1) (2018), 91 – 103, DOI: 10.5666/KMJ.2018.58.1.91.
H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.
J. Li, Lacunary statistical convergence and inclusion properties between lacunary methods, International Journal of Mathematics and Mathematical Sciences 23(3) (2000), 175 – 180, DOI: 10.1155/s0161171200001964.
I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge (1970), DOI: 10.1002/bimj.19700120325.
S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728(1) (1994), 183 – 197, DOI: 10.1111/j.1749-6632.1994.tb44144.x.
S. A. Mohiuddine and M. Aiyub, Lacunary statistical convergence in random 2-normed spaces, Applied Mathematics & Information Sciences 6(3) (2012), 581 – 585, URL: https://www.naturalspublishing.com/download.asp?ArtcID=1025.
S. A. Mohiuddine and M. A. Alghamdi, Statistical summability through a lacunary sequence in locally solid Riesz spaces, Journal of Inequalities and Applications 2012 (2012), Article number: 225, DOI: 10.1186/1029-242x-2012-225.
H. Nakano, Concave modulars, Journal of the Mathematical Society of Japan 5(1) (1953), 29 – 49, DOI: 10.2969/jmsj/00510029
S. J. O. Neil, Two Topologies Are Better Than One, Department of Computer Science Research Report, CS-RR-283, Department of Computer Science, University of Warwick (1995).
I. Niven and H. S. Zuckerman, An Introduction to Theory of Numbers, 4th edition, John Willey & Sons, New York, 356 pages (1980).
F. Nuray, Statistical convergence in partial metric spaces, Korean Journal of Mathematics 30(1) (2022), 155 – 160, DOI: 10.11568/kjm.2022.30.1.155.
S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus, Mathematica Slovaca 45(3) (1995), 275 – 280, URL: http://eudml.org/doc/31887.
D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian Journal of Pure and Applied Mathematics 25 (1994), 381.
W. H. Ruckle, Sequence Spaces, Pitman Advanced Publishing Program, 198 pages (1981).
T. Šalát, On statistically convergent sequences of real numbers, Mathematica Slovaca 30(2) (1980), 139 – 150, URL: https://eudml.org/doc/34081.
B. Samet, C. Vetro and F. Vetro, From metric to partial metric spaces, Fixed Point Theory and Applications 2013 (2013), Article number: 5, DOI: 10.1186/1687-1812-2013-5.
I. J. Schoenberg, The integrability of certain functions and related summability methods, The American Mathematical Monthly 66(5) (1959), 361 – 775, DOI: 10.2307/2308747.
H. ¸ Sengül and M. Et, On lacunary statistical convergence of order α, Acta Mathematica Scientia 34(2) (2014), 473 – 482, DOI: 10.1016/s0252-9602(14)60021-7.
N. Sharma and S. Kumar, Statistical convergence and Cesàro summability of difference sequences relative to modulus function, Journal of Classical Analysis 23(1) (2024), 51 – 62, DOI: 10.7153/jca-2024-23-05.
H. Steinhaus, Sur la Convergence Ordinaire et la Convergence Asymptotique, Colloquium Mathematicum 2(1) (1951), 73 – 74.
B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bulletin of the Malaysian Mathematical Sciences Society 20(1) (1997), 31 – 33.
B. C. Tripathy and A. Baruah, Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Mathematical Journal 50 (2010), 565 – 574, DOI: 10.5666/kmj.2010.50.4.565.
B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δ-statistical convergence, Analelestiintifice ale Universitatii “Ovidius” Constan¸ta. Seria Matematic˘a 20(1) (2012), 417 – 430, DOI: 10.2478/v10309-012-0028-1.
B. C. Tripathy, B. Hazarika and B. Choudhary, Lacunary I-convergent sequences, Kyungpook Mathematical Journal 52(4) (2012), 473 – 482, DOI: 10.5666/kmj.2012.52.4.473.
A. Zygmund, Trigonometric Series, 3rd edition, Cambridge University Press, Cambridge, xxvi + 756 pages (2003), DOI: 10.1017/CBO9781316036587.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.