Connected Certified Domination in Graphs: Properties and Algorithmic Aspects

Authors

DOI:

https://doi.org/10.26713/cma.v15i2.2630

Keywords:

Dominating set, Certified Dominating Set (CFDS), Connected Certified Dominating Set (CCDS), Nordhaus-Gaddum results

Abstract

A certified dominating set \(D\) of a graph \(\Gamma=(V_\Gamma,E_\Gamma)\) denoted by \(\gamma_{\mathit{cer}}\)-set, is the subset of \(V_\Gamma\) such that \(|N(u)\cap(V_\Gamma-D)|\) is either \(0\) or \(2\), \(\forall\) \(u\in D\). A set \(\mathcal{D}_c\subseteq V_\Gamma\) is called a connected certified dominating set \((\gamma_{\mathit{cer}}^c\)-set\()\) if \(\mathcal{D}_c\) is \(\gamma_{\mathit{cer}}\)-set and \(\Gamma[\mathcal{D}_c]\) is connected. Also, if \(\mathcal{D}_c\) has no proper subset, then it is a smallest \(\gamma_{\mathit{cer}}^c\)-set, and the cardinality of the smallest \(\gamma_{\mathit{cer}}^c\)-set is called as connected certified domination number (CCDN) of the graph \(\Gamma\) represented by \(\gamma_{\mathit{cer}}^c(\Gamma)\). In this article, we continue the study of connected certified domination. Herein, we classify graphs with larger values of CCDN and then we will study some properties of connected certified domination. Moreover, we will provide upper bounds and Nordhaus-Gaddum results for the CCDN. Additionally, we will prove that the connected certified domination problem is NP-complete for star convex bipartite graphs, comb convex bipartite graphs, and planar graphs.

Downloads

Download data is not yet available.

References

M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Applied Mathematics 161(4-5) (2013), 466 – 546, DOI: 10.1016/j.dam.2011.12.018.

G. Chartrand and J. Mitchem, Graphical theorems of the Nordhaus-Gaddum class, in: Recent Trends in Graph Theory, M. Capobianco, J. B. Frechen and M. Krolik (editors), Lecture Notes in Mathematics, Vol. 186, Springer, Berlin — Heidelberg, DOI: 10.1007/BFb0059422.

E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10(3) (1980), 211 – 219, DOI: 10.1002/net.3230100304.

M. Dettlaff, M. Lemanska, J. Topp, R. Ziemann and P. Zylinski, Certified domination, AKCE International Journal of Graphs and Combinatorics 17(1) (2020), 86 – 97, DOI: 10.1016/j.akcej.2018.09.004.

M. Dettlaff, M. Lemanska, M. Miotk, J. Topp, R. Ziemann and P. Zylinski, Graphs with equal domination and certified domination numbers, Opuscula Mathematica 39(6) (2019), 815 – 827, DOI: 10.7494/OpMath.2019.39.6.815.

M. E. Dyer and A. M. Frieze, Planar 3DM is NP-complete, Journal of Algorithms 7(2) (1986), 174 – 184, DOI: 10.1016/0196-6774(86)90002-7.

S. Erfang, D. Chuangyin and K. Liying, A note on Nordhaus-Gaddum inequalities for domination, Discrete Applied Mathematics 136(1) (2004), 83 – 85, DOI: 10.1016/S0166-218X(03)00200-2.

Z. Füredi, A. V. Kostochka, R. Škrekovski, M. Stiebitz and D. B. West, Nordhaus-Gaddum-type theorems for decompositions into many parts, Journal of Graph Theory 50(4) (2005), 273 – 292, DOI: 10.1002/jgt.20113.

W. Goddard and M. A. Henning, Nordhaus-Gaddum bounds for independent domination, Discrete Mathematics 268(1-3) (2003), 299 – 302, DOI: 10.1016/S0012-365X(03)00032-3.

W. Goddard, M. A. Henning and H. C. Swart, Some Nordhaus-Gaddum-type results, Journal of Graph Theory 16(3) (1992), 221 – 231, DOI: 10.1002/jgt.3190160305.

V. S. Goswami, A. Ilyass and K. K. Bhagwat, Certified domination number of some graphs, AIP Conference Proceedings 2735 (2023), 040029, DOI: 10.1063/5.0140648.

F. Harary and T. W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Mathematics 155(1-3) (1996), 99 – 105, DOI: 10.1016/0012-365X(94)00373-Q.

J. H. Hattingh, E. Jonck, E. J. Joubert and A. R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs, Discrete Mathematics 308(7) (2008), 1080 – 1087, DOI: 10.1016/j.disc.2007.03.061.

T. W. Haynes, Domination in Graphs, Volume 2: Advanced Topics, 1st edition, Routledge, 520 pages (2017), DOI: 10.1201/9781315141428.

T. W. Haynes, S. T. Hedetniemi and M. A. Henning (editors), Topics in Domination in Graphs, Vol. 64, Springer Cham., viii + 545 pages (2020), DOI: 10.1007/978-3-030-51117-3.

M. A. Henning, E. J. Joubert and J. Southey, Nordhaus-Gaddum bounds for total domination, Applied Mathematics Letters 24(6) (2011), 987 – 990 DOI: 10.1016/j.aml.2011.01.011.

A. Ilyass and V. S. Goswami, Connected certified domination number of certain graphs, AIP Conference Proceedings 2735 (2023), 040028, DOI: 10.1063/5.0140647.

P. K. Jakkepalli, S. Arumugam, H. Khandelwal and V. S. Reddy, Algorithmic aspects of certified domination in graphs, Communications in Combinatorics and Optimization 7(2) (2022), 247 – 255, DOI: 10.22049/CCO.2021.27302.1226.

R. M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, 50 Years of Integer Programming 1958-2008, M. Jünger et al. (editors), Springer, Berlin, Heidelberg, pp. 219 – 241 (2010), DOI: 10.1007/978-3-540-68279-0_8.

R. Khoeilar, H. Karami, M. Chellali, S. M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum type results for connected and total domination, RAIRO-Operations Research 55 (2021), S853 – S862, DOI: 10.1051/ro/2020025.

A. I. Lone and V. Goswami, Connected certified domination edge critical and stable graphs, Acta Universitatis Sapientiae Informatica 15(1) (2023), 25 – 37, DOI: 10.2478/ausi-2023-0003.

E. A. Nordhaus and J. W. Gaddum, On complementary graphs, The American Mathematical Monthly 63(3) (1956), 175 – 177, DOI: 10.2307/2306658.

C. Payan and N. H. Xuong, Domination-balanced graphs, Journal of Graph Theory 6(1) (1982), 23 – 32, DOI: 10.1002/jgt.3190060104.

S. D. Raj and S. G. S. Kumari, Certified domination number in product of graphs, Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11(3) (2020), 1166 – 1170, DOI: 10.17762/turcomat.v11i3.10298.

D. B. West, Introduction to Graph Theory, 2nd edition, Pearson Education, India (2002).

Downloads

Published

14-11-2024
CITATION

How to Cite

Ilyass, A., & Mani, N. (2024). Connected Certified Domination in Graphs: Properties and Algorithmic Aspects. Communications in Mathematics and Applications, 15(2), 817–827. https://doi.org/10.26713/cma.v15i2.2630

Issue

Section

Research Article