Some Properties of \(\epsilon\)-Kenmotsu Manifolds With Quarter-Symmetric Non-Metric Connection

Authors

DOI:

https://doi.org/10.26713/cma.v15i2.2597

Keywords:

(ϵ)-Kenmotsu manifold, Quarter-symmetric non-metric connection, Ricci soliton, Quasiprojectively flat, φ-projectively flat

Abstract

The objective of this paper is to investigate the \(\epsilon\)-Kenmotsu manifolds with quartersymmetric non-metric connection. We have investigate an \(\epsilon\)-Kenmotsu manifolds admitting the quarter-symmetric non-metric connections satisfying certain conditions. We have further provided the equivalent conditions for Ricci soliton in an \(\epsilon\)-Kenmotsu manifolds to be shrinking or expanding with the quarter-symmetric non-metric connection. We have also investigated \(\phi\)-projectively flat, Quasiprojectively flat and some interesting results. Finally, we have given an example of 3-dimensional \(\epsilon\)-Kenmotsu manifolds with respect to quarter-symmetric non-metric connection.

Downloads

Download data is not yet available.

References

C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 28(1) (2012), 59 – 68, URL: https://www.emis.de/journals/AMAPN/vol28_1/8.html.

U. C. De and A. Sarkar, On (ϵ)-Kenmotsu manifolds, Hadronic Journal 32 (2009), 231 – 242.

U. C. De and A. Yildiz, Certain curvature conditions on generalized sasakian space-forms, Quaestiones Mathematicae 38(4) (2015), 495 – 504, DOI: 10.2989/16073606.2014.981687.

K. De, A. M. Blaga and U. C. De, ∗-Ricci solitons on (ϵ)-Kenmotsu manifolds, Palestine Journal of Mathematics 9(2) (2020), 984 – 990, URL: https://pjm.ppu.edu/paper/774.

A. Friedmann and A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Mathematische Zeitschrift 21 (1924), 211 – 223, DOI: 10.1007/BF01187468.

R. S. Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity, Contemporary Mathematics Volume 71 (1988), 237 – 262.

A. Haseeb, Some results on projective curvature tensor is an ϵ-Kenmotsu manifolds, Palestine Journal of Mathematics 6(II) (2017), 196 – 203, URL: https://pjm.ppu.edu/sites/default/files/papers/PJM_JUNE_2017_13.pdf.

A. Haseeb and R. Prasad, ∗-conformal η-Ricci solitons in ϵ-Kenmotsu manifold, Publications de l’Institut Mathematique 108(122) (2020), 91 – 102, DOI: 10.2298/PIM2022091H.

A. Haseeb, M. K. Khan and M. D. Siddiqi, Some more results on an epsilon-Kenmotsu manifold with a semi-symmetric semi-metric connection, Acta Mathematica Universitatis Comenianae 85(1) (2016), 9 – 20, URL: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/97/275.

K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Mathematical Journal 24(1) (1972), 93 – 103, DOI: 10.2748/tmj/1178241594.

C. Ozgur and U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica 17(2) (2006), 221 – 228, URL: https://www.emis.de/journals/MP/index_elemei/mp17-2/mp17-2-221-228.pdf.

G. P. Singh and S. K. Srivastava, On Kenmotsu manifold with quarter symmetric non-metric φ-connection, International Journal of Pure and Applied Mathematical Sciences 9(1) (2016), 67 – 74, URL: https://www.ripublication.com/ijpams16/ijpamsv9n1_08.pdf.

R. N. Singh, S. K. Pandey, G. Pandey and K. Tiwari, On a semi-symmetric metric connection is an ϵ-Kenmotsu manifold, Communications of the Korean Mathematical Society 29(2) (2014), 331 – 343, DOI: 10.4134/CKMS.2014.29.2.331.

S. Sular, C. Özgür and U. C. De, Quarter-symmetric metric connection in a Kenmotsu manifold, SUT Journal of Mathematics, 44(2) (2008), 297 – 306, DOI: 10.55937/sut/1234383520.

Venkatesha and S. V. Vishnuvardhana, (ϵ)-Kenmotsu manifolds admitting a semi-symmetric connection, Italian Journal of Pure and Applied Mathematics 38 (2017), 615 – 623, URL: https://ijpam.uniud.it/online_issue/201738/53-Venkatesha-Vishnuvardhana.pdf.

S. K. Yadav and D. L. Suthar, Kenmotsu manifolds with quarter-symmetric non-metric connections, Montes Taurus of Journal of Pure and Applied Mathematics 5(1) (2023), 78 – 89, URL: https://mtjpamjournal.com/wp-content/uploads/2023/07/MTJPAM-D-21-00060.pdf.

K. Yano, On semi-symmetric metric connections, Revue Roumaine de Mathématique Pures et Appliquées 15 (1970), 1579 – 1586.

A. Yidiz, U. C. De and E. Ata, On a type of Lorentzian para-Sasakian manifolds, Mathematical Reports 16(66)(1) (2014), 61 – 67, URL: http://imar.ro/journals/Mathematical_Reports/Pdfs/2014/1/5.pdf.

A. Yildiz, f -Kenmotsu manifolds with the Schouten-van Kampton connection, Publications De L’Institut Mathématique 102(116) (2017), 93 – 105, DOI: 10.2298/PIM1716093Y.

Downloads

Published

14-11-2024
CITATION

How to Cite

Singh, A., Gautam, S., & Kumar, L. (2024). Some Properties of \(\epsilon\)-Kenmotsu Manifolds With Quarter-Symmetric Non-Metric Connection. Communications in Mathematics and Applications, 15(2), 739–752. https://doi.org/10.26713/cma.v15i2.2597

Issue

Section

Research Article