Some Fixed Point Theorems for Generalized \(\alpha\)-Admissible \(Z\)-Contraction via Simulation Function

Authors

DOI:

https://doi.org/10.26713/cma.v15i2.2558

Keywords:

Metric-like space, Fixed point, Generalized α-admissible mapping, Simulation function, Z-contractions

Abstract

In this paper, we prove some fixed point theorems in metric-like space by using generalized \(\alpha\)-admissible mapping embedded in the simulation function. Our results generalize and extend several known results on literature.

Downloads

Download data is not yet available.

References

H. Alsamir, M. S. Noorani, W. Shatanawi, H. Aydi, H. Akhadkulov, H. Qawaqneh and K. Alanazi, Fixed point results in metric-like spaces via Sigma-simulation functions, European Journal of Pure and Applied Mathematics 12(1) (2019), 88 – 100, DOI: 10.29020/nybg.ejpamv12i1.3331.

A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory and Applications 204 (2012), Article number: 204, DOI: 10.1186/1687-1812-2012-204.

H. Argoubi, B. Samet and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, Journal of Nonlinear Sciences and Applications 8(6) (2015), 1082 – 1094, DOI: 10.22436/jnsa.008.06.18.

H. Aydi, A. Felhi and S. Sahmim, Common fixed points via implicit contractions on b-metriclike spaces, Journal of Nonlinear Sciences and Applications 10(4) (2017), 1524 – 1537, DOI: 10.22436/jnsa.010.04.20.

H. Aydi, A. Felhi and S. Sahmim, On common fixed points for (α,ψ)-contractions and generalized cyclic contractions in b-metric-like spaces and consequences, Journal of Nonlinear Sciences and Applications 9(5) (2016), 2492 – 2510, DOI: 10.22436/jnsa.009.05.48.

S.-H. Cho, Fixed point theorem for (α,β)-Z-contractions in metric spaces, International Journal of Mathematical Analysis 13(4) (2019), 161 – 174, DOI: 10.12988/ijma.2019.9318.

A. Dewangan, A. K. Dubey, M. D. Pandey and R. P. Dubey, Fixed points for (α,β)-admissible mapping via simulation functions, Communications in Mathematics and Applications 12(4) (2021), 1101 – 1111, DOI: 10.26713/cma.v12i4.1615.

A. Felhi, H. Aydi and D. Zhang, Fixed points for α-admissible contractive mappings via simulation functions, Journal of Nonlinear Sciences and Application 9(10) (2016), 5544 – 5560, DOI: 10.22436/jnsa.009.10.05.

E. Karapınar, Fixed points results via simulation functions, Filomat 30(8) (2016), 2343 – 2350, DOI: 10.2298/FIL1608343K.

F. Khojasteh, S. Shukla and S. Radenovi´c, A new approach to the study of fixed point theory for simulation functions, Filomat 29(6) (2015), 1189 – 1194, DOI: 10.2298/FIL1506189K.

S. Mishra, A. K. Dubey, U. Mishra and R. P. Dubey, On some fixed point results for cyclic (α,β)-admissible almost z-contraction in metric like space with simulation function, Communications in Mathematics and Applications 13(1) (2022), 223 – 233, DOI: 10.26713/cma.v13i1.1666.

A. Padcharoen and P. Sukprasert, On admissible mapping via simulation function, Australian Journal of Mathematical Analysis and Applications 18(1) (2021), Art. 14, 10 pages, URL: https://ajmaa.org/searchroot/files/pdf/v18n1/v18i1p14.pdf.

H. Qawaqneh, M. S. M. Noorani, W. Shatanawi and H. Alsamir, Common fixed points for pairs of triangular α-admissible mappings, Journal of Nonlinear Sciences and Applications 10 (12) (2017), 6192 – 6204, DOI: 10.22436/jnsa.010.12.06.

A.-F. Roldán-López-de-Hierro, E. Karapınar, C. Roldán-López-de-Hierro and J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, Journal of Computational and Applied Mathematics 275 (2015), 345 – 355, DOI: 10.1016/j.cam.2014.07.011.

I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca (2001).

B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications 75(4) (2012), 2154 – 2165, DOI: 10.1016/j.na.2011.10.014.

Downloads

Published

14-11-2024
CITATION

How to Cite

Shriwas, M. K., Dubey, A. K., & Mishra, U. (2024). Some Fixed Point Theorems for Generalized \(\alpha\)-Admissible \(Z\)-Contraction via Simulation Function. Communications in Mathematics and Applications, 15(2), 765–775. https://doi.org/10.26713/cma.v15i2.2558

Issue

Section

Research Article