Pseudosymmetric Almost \(\alpha\)-Cosymplectic \((\kappa,\mu,\nu)\)-Spaces Admitting Einstein Solitons

Authors

DOI:

https://doi.org/10.26713/cma.v15i2.2537

Keywords:

Almost \(\alpha\)-cosymplectic \((\kappa,\mu,\nu)\)-Space, Einstein soliton, Pseudosymmetric manifold

Abstract

This paper attempts to characterize cases of an almost \(\alpha\)-cosymplectic \((\kappa,\mu,\nu)\)-space admitting Einstein sloitons to be concircular Ricci pseudosymmetry, projective Ricci pseudosymmetry, \(W_1\)-curvature and the \(W_2\)-curvature Ricci pseudo symmetric.

Downloads

Download data is not yet available.

References

M. Atceken and P. Uygun, Characterizations for totally geodesic submanifolds of (κ,μ)-paracontact metric manifolds, Korean Journal of Mathematics 28(3) (2020), 555 – 571, DOI: 10.11568/kjm.2020.28.3.555.

M. Atceken, U. Yildirim and S. Dirik, Pseudoparallel invariant submanifolds of (LCS)n-manifolds, Korean Journal of Mathematics 28(2) (2020), 275 – 284, DOI: 10.11568/kjm.2020.28.2.275.

A. M. Blaga, On gradient η-Einstein solitons, Kragujevac Journal of Mathematics 42(2) (2018), 229 – 237, URL: https://imi.pmf.kg.ac.rs/kjm/pdf/accepted-finished/d5c14aacac88c2ff195e80d283803a78_2536_10282017_112129/kjm_42_2-6.pdf.

A. Carriazo and V. Martín-Molina, Almost cosymplectic and almost Kenmotsu (κ,μ,ν)-spaces, Mediterranean Journal of Mathematics 10 (2013), 1551 – 1571, DOI: 10.1007/s00009-013-0246-4.

G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Analysis 132 (2016), 66 – 94, DOI: 10.1016/j.na.2015.10.021.

P. Dacko and Z. Olszak, On almost cosymplectic (−1,μ,0)-spaces, Central European Journal of Mathematics 3 (2005), 318 – 330, DOI: 10.2478/BF02479207.

P. Dacko and Z. Olszak, On almost cosympletic (κ,μ,ν)-spaces, Banach Center Publications 69(1) (2005), 211 – 220, URL: https://eudml.org/doc/282258.

R. Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity, J. A. Isenberg (Editor), Vol. 71, pp. 237 – 261, (1988), DOI: 10.1090/conm/071.

T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Mathematica Sinica 21 (2005), 841 – 856, DOI: 10.1007/s10114-004-0520-2.

S. Roy, S. Dey and A. Bhattacharyya, A Kenmotsu metric as a conformal η-Einstein soliton, Carpathian Mathematical Publications 13(1) (2021), 110 – 118, DOI: 10.15330/cmp.13.1.110-118.

S. Roy, S. Dey and A. Bhattacharyya, Conformal Einstein soliton within the framework of para-Kähler manifolds, Differential Geometry – Dynamical Systems 23 (2021), 235 – 243.

R. Sharma, Almost Ricci solitons and K-contact geometry, Monatshefte für Mathematik 175 (2014), 621 – 628, DOI: 10.1007/s00605-014-0657-8.

R. Ye, Global existence and convergence of Yamabe flow, Journal of Differential Geometry 39(1) (1994), 35 – 50, DOI: 10.4310/jdg/1214454674.

Downloads

Published

14-11-2024
CITATION

How to Cite

Atceken, M., Mert, T., & Uygun, P. (2024). Pseudosymmetric Almost \(\alpha\)-Cosymplectic \((\kappa,\mu,\nu)\)-Spaces Admitting Einstein Solitons. Communications in Mathematics and Applications, 15(2), 801–815. https://doi.org/10.26713/cma.v15i2.2537

Issue

Section

Research Article