Travelling wave solutions to fourth-order nonlinear equation

Authors

  • Salisu Ibrahim Mathematics of Education, Tishk International University-Erbil, Kurdistan Region, Iraq

Keywords:

Fourth -Order Nonlinear equation; Optical Solitons; Traveling wave solutions; Riccati-Bernoulli sub-ODE method.

Abstract

In this paper, we study the soliton solutions of the fourth-order nonlinear partial differential
equations (NPDE). The Riccati-Bernoulli (RB) sub-ODE method is applied to the
fourth-order NPDE to investigate the exact and traveling wave solutions. we secure singular
periodic wave solutions, kink-type soliton solution, dark soliton and singular soliton solution,
which have unlimited application in mathematical physic, science and engineering. Some
figures for the obtained solutions are demonstrated.

Downloads

Download data is not yet available.

References

Whitham, G. B.: Linear and nonlinear waves. John Wiley & Sons (2011)

Agrawal, G. P.: Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century.

Springer, Berlin, Heidelberg (2000)

Hasegawa, A., Kodama, Y., Maruta, A.: Recent progress in dispersion-managed soliton

transmission technologies. Optical Fiber Technology 3(3), 197-213 (1997)

Chen, Y., Yan, Z.: New exact solutions of (2+1)-dimensional Gardner equation via the new

sine-Gordon equation expansion method. Chaos, Solitons & Fractals 26(2), 399-406 (2005)

Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg-Landau equation with

power law nonlinearity. Progress in Electromagnetics Research 96, 1-7 (2009)

Tchier, F., Aliyu, A. I., Yusuf, A., Inc, M.: Dynamics of solitons to the ill-posed Boussinesq

equation. The European Physical Journal Plus 132(3), 1-9 (2017)

Mirzazadeh, M., Mahmood, M. F., Majid, F. B., Biswas, A., Belic, M.: Optical solitons in

birefringent fibers with Riccati equation method. Optoelectron. Adv. Mater.–Rapid Commun.

, 1032-1036 (2015)

Zhou, Q., Mirzazadeh, M., Ekici, M. E. H. M. E. T., Sonmezoglu, A. B. D. U. L. L. A.

H.: Analytical study of solitons in non-Kerr nonlinear negative-index materials. Nonlinear

Dynamics 86(1), 623-638 (2016)

Inc, M., Aliyu, A. I., Yusuf, A. Traveling wave solutions and conservation laws of some

fifth-order nonlinear equations. The European Physical Journal Plus, 132(5), 1-16.

Chen, Y., Yan, Z., Mihalache, D., Malomed, B. A.: Families of stable solitons and excitations

in the PT-symmetric nonlinear Schr¨odinger equations with position-dependent effective

masses. Scientific Reports 7(1), 1-21 (2017)

Abdou, M. A., Elhanbaly, A.: Construction of periodic and solitary wave solutions by the

extended Jacobi elliptic function expansion method. Communications in Nonlinear Science

and Numerical Simulation, 12(7), 1229-1241 (2007)

Tchier, F., Yusuf, A., Aliyu, A. I., Inc, M.: Soliton solutions and conservation laws for

lossy nonlinear transmission line equation. Superlattices and Microstructures, 107, 320-336

(2017)

Sulaiman, T. A., Yusuf, A., Alshomrani, A. S., Baleanu, D.: Lump Collision Phenomena to

a Nonlinear Physical Model in Coastal Engineering. Mathematics 10(15), 2805 (2022)

Sulaiman, T. A., Younas, U., Younis, M., Ahmad, J., Rehman, S. U., Bilal, M., Yusuf, A.:

Modulation instability analysis, optical solitons and other solutions to the (2+1)-dimensional

hyperbolic nonlinear Schrodinger’s equation. Computational Methods for Differential Equations

(1), 179-190 (2022)

Fang, J. J., Mou, D. S., Zhang, H. C., Wang, Y. Y.: Discrete fractional soliton dynamics of

the fractional Ablowitz-Ladik model. Optik 228, 166186 (2021)

Tao, G., Sabi’u, J., Nestor, S., El-Shiekh, R. M., Akinyemi, L., Az-Zo’bi, E., Betchewe, G.:

Dynamics of a new class of solitary wave structures in telecommunications systems via a

(2+ 1)-dimensional nonlinear transmission line. Modern Physics Letters B 36(19), 2150596

(2022)

Ibrahim, S.: Discrete least square method for solving differential equations,

Advances and Applications in Discrete Mathematics 30 (2022), 87-102.

http://dx.doi.org/10.17654/0974165822021

Khalaf, A. D., Zeb, A., Sabawi, Y. A., Djilali, S., Wang, X.: Optimal rates for the parameter

prediction of a Gaussian Vasicek process. The European Physical Journal Plus, 136(8), 1-17

(2021).

Akinyemi, L., Akpan, U., Veeresha, P., Rezazadeh, H., Inc, M.: Computational techniques

to study the dynamics of generalized unstable nonlinear Schr¨odinger equation. Journal of

Ocean Engineering and Science (2022) https://doi.org/10.1016/j.joes.2022.02.011

Sabawi, Y. A.: A posteriori error analysis in finite element approximation for fully discrete

semilinear parabolic problems. In Finite Element Methods and Their Applications.

IntechOpen (2020).

Cangiani, A., Georgoulis, E., Sabawi, Y.: Adaptive discontinuous Galerkin methods for

elliptic interface problems. Mathematics of Computation, 87(314), (2018) 2675-2707.

Kudryashov, N. A.: One method for finding exact solutions of nonlinear differential equations.

Communications in Nonlinear Science and Numerical Simulation 17(6), (2012) 2248-

Ibrahim, S., M. E. Koksal.: Commutativity of sixth-order time-varying linear systems,

Circuits, Systems, and Signal Processing, 40(10) (2021) 4799–4832.

Ibrahim, S., M. E. Koksal.: Realization of a fourth-order linear time-varying differential

system with nonzero initial conditions by cascaded two second-order commutative pairs,

Circuits, Systems, and Signal Processing, 40(6) (2021) 3107–3123.

Ibrahim, S., Rababah, A.: Decomposition of Fourth-Order Euler-Type Linear Time-Varying

Differential System into Cascaded Two Second-Order Euler Commutative Pairs. Complexity,

(2022) 9. https://doi.org/10.1155/2022/3690019.

Ibrahim, S.: Commutativity of high-order linear time-varying systems. Advances in Differential

Equations and Control Processes, 27 (2022). http://dx.doi.org/10.17654/0974324322013

Ibrahim, S.: Commutativity associated with Euler second-order differential equation,

Advances in Differential Equations and Control Processes 28 (2022), 29-36.

http://dx.doi.org/10.17654/0974324322022

Yang, X. F., Deng, Z. C., Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear

partial differential equations and its application. Advances in Difference equations, 2015(1),

(2015) 1-17.

Tchier, F., Yusuf, A., Aliyu, A. I., Inc, M.: Soliton solutions and conservation laws for

lossy nonlinear transmission line equation. Superlattices and Microstructures, 107, (2017)

-336.

Baleanu, D., Inc, M., Aliyu, A. I., Yusuf, A.: Dark optical solitons and conservation laws

to the resonance nonlinear Shr¨odinger’s equation with Kerr law nonlinearity. Optik, 147,

(2017) 248-255.

Karaman, B.: New Exact Solutions of the Time-Fractional Foam Drainage Equation via a

Riccati-Bernoulli Sub Ode Method. In Online International Symposium on Applied Mathematics

and Engineering (ISAME22) January 21-23, (2022) Istanbul-Turkey pp 105.

Ozdemir, N., Esen, H., Secer, A., Bayram, M., Yusuf, A., Sulaiman, T. A.: Optical solitons

and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta

derivatives. Modern Physics Letters B, 36(11),(2022) 2150625.

Published

14-11-2024

How to Cite

Ibrahim, S. (2024). Travelling wave solutions to fourth-order nonlinear equation. Communications in Mathematics and Applications, 15(2). Retrieved from https://rgnpublications.com/journals/index.php/cma/article/view/2497

Issue

Section

Research Article