On Super Heronian Mean Labeling of Some Subdivision Graphs

Authors

  • Lorelie S. Valencerina Department of Mathematics and Statistics, University of Southeastern Philippines, Davao City, Philippines
  • Ariel C. Pedrano Department of Mathematics and Statistics, University of Southeastern Philippines, Davao City, Philippines https://orcid.org/0000-0003-0545-2121

DOI:

https://doi.org/10.26713/cma.v15i2.2162

Keywords:

Super Heronian mean graph, Subdivision graph, Snake graphs

Abstract

Let f:V(G){1,2,,p+q} be an injective function, where p=|V(G)| and q=|E(G)|. For a vertex labeling f the induced edge labeling f(e=uv) is defined by,
f(e)=f(u)+f(u)f(v)+f(v)3 or f(u)+f(u)f(v)+f(v)3.
Then f is called a super Heronian mean labeling if {f(V(G))}{f(e):eE(G)}={1,2,3,,p+q}. A graph which admits super Heronian mean labeling is called super Heronian mean graph.

Downloads

References

J. A. Gallian, A dynamic survey of a graph labeling, The Electronic Journal of Combinatorics (Dynamic Survey), Version 25 (2016), 623 pages, URL: 10.37236/27.

N. Revathi, Mean labeling of some graphs, International Journal of Science and Research 4 (2015), 1921 – 1923.

S. S. Sandhya, E. E. R. Merly and G. D. Jemi, Some results on super Heronian mean labeling of graphs, International Journal of Contemporary Mathematical Sciences 11 (10) (2016), 485 – 495, DOI: 10.12988/ijcms.2016.6843.

S. S. Sandhya, E. E. R. Merly and G. D. Jemi, Some more results on super heronian mean labeling, International Journal of Mathematics Research 8(3) (2016), 199 – 206.

S. S. Sandhya, E. E. R. Merly and G. D. Jemi, Some new results on super Heronian mean, Journal of Mathematics Research 9(1) (2017), 62 – 67, DOI: 10.5539/jmr.v9n1p62.

S. S. Sandhya, E. E. R. Merly and G. D. Jemi, On super Heronian mean labeling of graphs, Asia Pacific Journal of Research 1 (2017), 127 – 133, DOI: 10.12988/IMF.2017.68108.

Downloads

Published

14-11-2024
CITATION

How to Cite

Valencerina, L. S., & Pedrano, A. C. (2024). On Super Heronian Mean Labeling of Some Subdivision Graphs. Communications in Mathematics and Applications, 15(2), 597–603. https://doi.org/10.26713/cma.v15i2.2162

Issue

Section

Research Article