Sensitivity Analysis of Vector-host Dynamic Dengue Epidemic Model

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2119

Keywords:

Basic reproduction number (R0), Dengue fever, Metzler matrix, ; Numerical simulation, Sensitivity analysis, Stability

Abstract

A global health hazard, dengue fever causes or contributes to the deaths of 10,000 people and 100 million cases of symptomatic cases every year in more than half of the globe. The goal of this work is to construct a compartmental vector-borne dengue model that takes into account the typical incidence connection between infected humans and susceptible vectors in order to examine the impact of model parameters that are within our control on the basic reproduction number. In order to determine the basic reproduction number \(R_0\), the next-generation matrix is used. The theoretical study reveals that disease-free equilibrium occurs as a locally asymptotically stable if \(R_0<1\). To measure the disease-free and endemic equilibrium points' global stability, LaSalle's concept is applied. The normalized forward sensitivity index methods show that the epidemic spread can reduce by increasing the rate of symptomatically infected humans to isolated infected humans and the rate of recovery of symptomatically infected humans.

Downloads

Download data is not yet available.

References

A. Abidemi, J. Ackora-Prah, H. O. Fatoyinbo and J. K. K. Asamoah, Lyapunov stability analysis and optimization measures for a dengue disease transmission model, Physica A: Statistical Mechanics and its Applications 602 (2022), 127646, DOI: 10.1016/j.physa.2022.127646.

F. B. Agusto and M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Mathematical Biosciences 305 (2018), 102 – 121, DOI: 10.1016/j.mbs.2018.09.007.

S. Ahmad, M. F. Yassen, M. M. Alam, S. Alkhati, F. Jarad and M. B. Riaz, A numerical study of dengue internal transmission model with fractional piecewise derivative, Results in Physics 39 (2022), 105798, DOI: 10.1016/j.rinp.2022.105798.

S. A. Carvalho, S. O. da Silva and I. da C. Charret, Mathematical modeling of dengue epidemic: control methods and vaccination strategies, Theory in Biosciences 138 (2019), 223 – 239, DOI: 10.1007/s12064-019-00273-7.

A. Chamnan, P. Pongsumpun, I.-M. Tang and N. Wongvanich, Local and global stability analysis of dengue disease with vaccination and optimal control, Symmetry 13(10) (2021), 1917, DOI: 10.3390/sym13101917.

L.-C. Chien and H.-L. Yu, Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence, Environment International 73 (2014), 46 – 56, DOI: 10.1016/j.envint.2014.06.018.

A. L. Claypool, M. L. Brandeau and J. D. Goldhaber-Fiebert, Prevention and control of dengue and chikungunya in Colombia: A cost-effectiveness analysis, PLOS Neglected Tropical Diseases 15(12) (2021), e0010086, DOI: 10.1371/journal.pntd.0010086.

A. Dwivedi and R. Keval, Analysis for transmission of dengue disease with different class of human population, Epidemiologic Methods 10(1) (2021), 20200046, DOI: 10.1515/em-2020-0046.

A. Dwivedi, V. Baniya and R. Keval, Application of optimal controls on dengue dynamics — a mathematical study, in: Mathematical Modelling and Computational Intelligence Techniques (ICMMCIT2021), P. Balasubramaniam, K. Ratnavelu, G. Rajchakit and G. Nagamani (editors), Springer Proceedings in Mathematics & Statistics, Vol. 376, Springer, Singapore (2021), DOI: 10.1007/978-981-16-6018-4_1.

M. R. Hasan, A. Hobiny and A. Alshehri, Analysis of vector-host SEIR-SEI dengue epidemiological model, International Journal of Analysis and Applications 20 (2022), 57, DOI: 10.28924/2291-8639-20-2022-57.

M. R. Hasan, A. A. Alsaiari, B. Z. Fakhurji, M. H. R. Molla, A. H. Asseri, M. A. A. Sumon, M. N. Park, F. Ahammad and B. Kim, Application of mathematical modeling and computational tools in the modern drug design and development process, Molecules 27(13) (2022), 4169, DOI: 10.3390/molecules27134169.

B. V. Huy, L. N. M. Hoa, D. T. Thuy, N. V. Kinh, T. T. D. Ngan, L. V. Duyet, N. T. Hung, N. N. Q. Minh, N. T. Truong and N. V. V. Chau, Epidemiological and clinical features of dengue infection in adults in the 2017 outbreak in Vietnam, BioMed Research International 2019 (2019), Article ID 3085827, 6 pages, DOI: 10.1155/2019/3085827.

N. T. Huy, T. Van Giang, D. H. D. Thuy, M. Kikuchi, T. T. Hien, J. Zamora and K. Hirayama, Factors associated with dengue shock syndrome: a systematic review and meta-analysis, PLOS Neglected Tropical Diseases 7(9) (2013), e2412, DOI: 10.1371/journal.pntd.0002412.

M. A. Khan and Fatmawati, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon 7 (2021), e06023, DOI: 10.1016/j.heliyon.2021.e06023.

G. Knerer, C. S. M. Currie and S. C. Brailsford, The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model, PLOS Neglected Tropical Diseases 14(10) (2020), e0008805, DOI: 10.1371/journal.pntd.0008805.

J.-S. Lee, M. Carabali, J. K. Lim, V. M. Herrera, I.-Y. Park, L. Villar and A. Farlow, Early warning signal for dengue outbreaks and identification of high risk areas for dengue fever in Colombia using climate and non-climate datasets, BMC Infectious Diseases 17 (2017), Article number: 480, DOI: 10.1186/s12879-017-2577-4.

A. Li-Martín, R. Reyes-Carreto and C. Vargas-De-León, Dynamics of a dengue disease transmission model with two-stage structure in the human population, Mathematical Biosciences and Engineering 20(1) (2023), 955 – 974, DOI: 10.3934/mbe.2023044.

K. Maiga and A. Hugo, Modelling the impact of health care providers in transmission dynamics of COVID-19, Results in Physics 38, 105552, DOI: 10.1016/j.rinp.2022.105552.

P. Mutsuddy, S. T. Jhora, A. K. M. Shamsuzzaman, S. M. G. Kaisar and M. N. A. Khan, Dengue situation in Bangladesh: An epidemiological shift in terms of morbidity and mortality, Canadian Journal of Infectious Diseases and Medical Microbiology 2019 (2019), Article ID 3516284, 12 pages, DOI: 10.1155/2019/3516284.

M. Z. Ndii, The effects of vaccination, vector controls and media on dengue transmission dynamics with a seasonally varying mosquito population, Results in Physics 34 (2022), 105298, DOI: 10.1016/j.rinp.2022.105298.

M. Z. Ndii, A. R. Mage, J. J. Messakh and B. S. Djahi, Optimal vaccination strategy for dengue transmission in Kupang city, Indonesia, Heliyon 6(11) (2020), e05345, DOI: 10.1016/j.heliyon.2020.e05345.

M. Z. Ndii, R. I. Hickson, D. Allingham and G. N. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Mathematical Biosciences 262 (2015), 157 – 166, DOI: 10.1016/j.mbs.2014.12.011.

L.-F. Nie and Y.-N. Xue, The roles of maturation delay and vaccination on the spread of Dengue virus and optimal control, Advances in Difference Equations 2017 (2017), Article number: 278, DOI: 10.1186/s13662-017-1323-y.

H. J. Oladipo, I. Rabiu and Y. A. Tajudeen, Dengue virus and SARS-CoV-2 co-infection dynamics: An emerging threat among African countries, Annals of Medicine & Surgery 82 (2022), 104398, DOI: 10.1016/j.amsu.2022.104398.

A. Omame, M. E. Isah and M. Abbas, An optimal control model for COVID-19, zika, dengue, and chikungunya co-dynamics with reinfection, Optimal Control Applications and Methods 44(1) (2022), 170 – 204, DOI: 10.1002/oca.2936.

A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama and J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, The European Physical Journal Plus 136 (2021), Article number: 1090, DOI: 10.1140/epjp/s13360-021-02030-6.

P. W. Orellano, J. I. Reynoso, H.-C. Stahl and O. D. Salomon, Cost-utility analysis of dengue vaccination in a country with heterogeneous risk of dengue transmission, Vaccine 34(5) (2016), 616 – 621, DOI: 10.1016/j.vaccine.2015.12.040.

A. Pandey, A. Mubayi and J. Medlock, Comparing vector-host and SIR models for dengue transmission, Mathematical Biosciences 246(2) (2013), 252 – 259, DOI: 10.1016/j.mbs.2013.10.007.

L. Pimpi, S. W. Indratno, J. W. Puspita and E. Cahyono, Stochastic and deterministic dynamic model of dengue transmission based on dengue incidence data and climate factors in Bandung city, Communication in Biomathematical Sciences 5 (2022), 78 – 89, DOI: 10.5614/cbms.2022.5.1.5.

T. Rawson, K. E. Wilkins and M. B. Bonsall, Optimal control approaches for combining medicines and mosquito control in tackling dengue, Royal Society Open Science 7(4) (2020), 181843, DOI: 10.1098/rsos.181843.

H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Sensitivity analysis in a dengue epidemiological model, Conference Papers in Science 2013 (2013), Article ID 721406, 7 pages, DOI: 10.1155/2013/721406.

H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Mathematical Biosciences 247 (2014), 1 – 12, DOI: 10.1016/j.mbs.2013.10.006.

L. S. Sepulveda-Salcedo, O. Vasilieva and M. Svinin, Optimal control of dengue epidemic outbreaks under limited resources, Studies in Applied Mathematics 144(2) (2020), 185 – 212, DOI: 10.1111/sapm.12295.

E. Shim, Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model, PLOS One 12(4) (2017), e0175020, DOI: 10.1371/journal.pone.0175020.

T. Shragai, J. Pérez-Pérez, M. del Pilar Quimbayo-Forero, R. Rojo, L. C. Harrington and G. Rúa-Uribe, Distance to public transit predicts spatial distribution of dengue virus incidence in Medellín, Colombia, Scientific Reports 12 (2022), Article number: 8333, DOI: 10.1038/s41598-022-12115-6.

A. K. Srivastav, P. K. Tiwari and M. Ghosh, Modeling the impact of early case detection on dengue transmission: deterministic vs. stochastic, Stochastic Analysis and Applications 39(3) (2021), 434 – 455, DOI: 10.1080/07362994.2020.1804403.

C. J. Tay, M. Fakhruddin, I. S. Fauzi, S. Y. Teh, M. Syamsuddin, N. Nuraini and E. Soewono, Dengue epidemiological characteristic in Kuala Lumpur and Selangor, Malaysia, Mathematics and Computers in Simulation 194 (2022), 489 – 504, DOI: 10.1016/j.matcom.2021.12.006.

S. Ullah, M. F. Khan, S. A. A. Shah, M. Farooq, M. A. Khan, M. Bin Mamat, Optimal control analysis of vector-host model with saturated treatment, The European Physical Journal Plus 135 (2020), Article number: 839, DOI: 10.1140/epjp/s13360-020-00855-1.

V. N. Valencia, Y. Díaz, J. M. Pascale, M. F. Boni and J. E. Sanchez-Galan, Assessing the effect of climate variables on the incidence of dengue cases in the metropolitan region of Panama city, International Journal of Environmental Research and Public Health 18 (2021), 12108, DOI: 10.3390/ijerph182212108.

Y. Wang, Y. Wei, K. Li, X. Jiang, C. Li, Q. Yue, B. C.-Y. Zee and K. C. Chong, Impact of extreme weather on dengue fever infection in four Asian countries: A modelling analysis, Environment International 169 (2022), 107518, DOI: 10.1016/j.envint.2022.107518.

T. T. Zheng and L. F. Nie, Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control, Journal of Theoretical Biology 443 (2018), 82 – 91, DOI: 10.1016/j.jtbi.2018.01.017.

L. Zou, J. Chen, X. Feng and S. Ruan, Analysis of a dengue model with vertical transmission and application to the 2014 dengue outbreak in Guangdong province, China, Bulletin of Mathematical Biology 80 (2018), 2633 – 2651, DOI: 10.1007/s11538-018-0480-9.

Downloads

Published

18-09-2023
CITATION

How to Cite

Hasan, M. R., Hobiny, A., & Alshehri, A. (2023). Sensitivity Analysis of Vector-host Dynamic Dengue Epidemic Model. Communications in Mathematics and Applications, 14(2), 1001–1017. https://doi.org/10.26713/cma.v14i2.2119

Issue

Section

Research Article