MHD Stagnation-Point Flow with Viscous Dissipation and Chemical Reaction Effects: Numerical Study

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2038

Keywords:

MHD, Viscous dissipation, Chemical reaction, Stretching sheet, Adams-Moulton method

Abstract

In this article, a numerical study of the magnetohydrodynamics flow with heat and mass diffusion of an electrically conducting stagnation point flow past a shrinking/stretching sheet with chemical reaction of diffusing species and internal heat absorption/generation is analyzed. Flow equations are modified to a system of non-linear Ordinary Differential Equations (ODE) by using the similarity transformations. Numerical solution of the Ordinary Differential Equations (ODE) is found by using the shooting technique with Adam’s Moulton method of order four. Finally, the results are discussed for different parameters affecting the flow and transfer of heat.

Downloads

Download data is not yet available.

References

F. T. Akyildiz, H. Bellout and K. Vajravelu, Diffusion of chemically reactive species in a porous medium over a stretching sheet, Journal of Mathematical Analysis and Applications 320(1) (2006), 322 – 339, DOI: 10.1016/j.jmaa.2005.06.095.

M. Ashraf and M. M. Ashraf, MHD stagnation point flow of a micropolar fluid towards a heated surface, Applied Mathematics and Mechanics 32 (2011), 45 – 54, DOI: 10.1007/s10483-011-1392-7.

A. Aziz, Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition, Communications in Nonlinear Science and Numerical Simulation 15(3) (2010), 573 – 580, DOI: 10.1016/j.cnsns.2009.04.026.

K. Bhattacharyya, Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet, International Communications in Heat and Mass Transfer 38(7) (2011), 917 – 922, DOI: 10.1016/j.icheatmasstransfer.2011.04.020.

K. Bhattacharyya, S. Mukhopadhyay and G. C. Layek, MHD boundary layer slip flow and heat transfer over a flat plate, Chinese Physics Letters 28 (2011), 024701, DOI: 10.1088/0256-307X/28/2/024701.

B. K. Chakraborty and H. P. Mazumdar, MHD flow of a Newtonian fluid over a stretching sheet: an approximate solution, Approximation Theory and its Applications 16 (2000), 32 – 41, DOI: 10.1007/BF02837054.

P. L. Chambré and J. D. Young, On the diffusion of a chemically reactive species in a laminar boundary layer flow, Physics of Fluids 1 (1958), 48 – 54, DOI: 10.1063/1.1724336.

A. J. Chamkha and A.-R. A. Khaled, Similarity solutions for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media, International Journal of Numerical Methods for Heat & Fluid Flow 10(1) (2000), 94 – 115, DOI: 10.1108/09615530010306939.

R. Cortell, Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing, Fluid Dynamics Research 37(4) (2005), 231, DOI: 10.1016/j.fluiddyn.2005.05.001.

L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP 21 (1970), 645 – 647, DOI: 10.1007/BF01587695.

G. C. Dash, R. S. Tripathy, M. M. Rashidi and S. R. Mishra, Numerical approach to boundary layer stagnation-point flow past a stretching/shrinking sheet, Journal of Molecular Liquids 221 (2016), 860 – 866, DOI: 10.1016/j.molliq.2016.06.072 0167-7322.

K. Govardhan, S. Misra and G. Narender, The effect of chemical reaction of a nano fluid past a permeable stretching sheet with MHD boundary layer flow and heat transfer, AIP Conference Proceedings 2246 (2020), 020008, DOI: 10.1063/5.0014551.

S. D. Harris, D. B. Ingham and I. Pop, Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip, Transport in Porous Media 77 (2009), 267 – 285, DOI: 10.1007/s11242-008-9309-6.

K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dingler’s Polytechnical Journal 326 (1911), 321.

F. Homann, Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 16(3) (1936), 153 – 164, DOI: 10.1002/zamm.19360160304.

A. Ishak, R. Nazar and I. Pop, Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium, International Journal of Heat and Mass Transfer 51(5-6) (2008), 1150 – 1155, DOI: 10.1016/j.ijheatmasstransfer.2007.04.029.

A. Ishak, R. Nazar and I. Pop, Magnetohydrodynamics stagnation point flow towards a stretching vertical sheet, Magnetohydrodynamics 42(1) (2006), 77 – 90, DOI: 10.22364/mhd.42.1.7.

A. Ishak, R. Nazar, N. M. Arifin and I. Pop, Dual solutions in magnetohydrodynamic mixed convection flow near a stagnation-point on a vertical surface, ASME Journal of Heat and Mass Transfer 129(9) (2007), 1212 – 1216, DOI: 10.1115/1.2740645.

A. Ishak, R. Nazar, N. M. Arifin and I. Pop, Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate, International Journal of Thermal Sciences 47(4) (2008), 417 – 422, DOI: 10.1016/j.ijthermalsci.2007.03.005.

S. K. Khan, M. S. Abel and R. M. Sonth, Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work, Heat and Mass Transfer 40 (2003), 47 – 57, DOI: 10.1007/s00231-003-0428-x.

S. Mukhopadhyay, K. Bhattacharyya and G. C. Layek, Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation, International Journal of Heat and Mass Transfer 54(13-14) (2011), 2751 – 2757, DOI: 10.1016/j.ijheatmasstransfer.2011.03.017.

S. Nadeem, A. Hussain and M. Khan, HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet, Communications in Nonlinear Science and Numerical Simulation 15(3) (2010), 475 – 481, DOI: 10.1016/j.cnsns.2009.04.037.

G. Narender, K. Govardhan and G. S. Sarma, MHD casson nanofluid past a stretching sheet with the effects of viscous dissipation, chemical reaction and heat source/sink, Journal of Applied and Computational Mechanics 7(4) (2021), 2040 – 2048, DOI: 10.22055/JACM.2019.14804.

N. F. M. Noor, S. A. Kechil and I. Hashim, Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet, Communications in Nonlinear Science and Numerical Simulation 15(2) (2010), 144 – 148, DOI: 10.1016/j.cnsns.2009.03.034.

A. Raptis, C. Perdikis and H. S. Takhar, Effect of thermal radiation on MHD flow, Applied Mathematics and Computation 153(2) (2004), 645 – 649, DOI: 10.1016/S0096-3003(03)00657-X.

A. M. Rohni, S. Ahmad, I. Pop and J. H. Merkin, Unsteady mixed convection boundary-layer flow with suction and temperature slip effects near the stagnation point on a vertical permeable surface embedded in a porous medium, Transport in Porous Media 92 (2012), 1 – 14, DOI: 10.1007/s11242-011-9883-x.

M. A. Seddeek and A. M. Salem, Laminar mixed convection adjacent to vertical continuously stretching sheets with variable viscosity and variable thermal diffusivity, Heat and Mass Transfer 41 (2005), 1048 – 1055, DOI: 10.1007/s00231-005-0629-6.

A. Sriramalu, N. Kishan and A. J. Anand, Steady flow and heat transfer of a viscous incompressible fluid flow through porous medium over a stretching sheet, Journal of Energy, Heat and Mass Transfer 23 (2001), 483 – 495.

R. S. Tripathy, G. C. Dash, S. R. Mishra and S. Baag, Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium, Alexandria Engineering Journal 54(3) (2015), 673 – 679, DOI: 10.1016/j.aej.2015.04.012.

C. Y. Wang, Stagnation flow towards a shrinking sheet, International Journal of Non-Linear Mechanics 43(5) (2008), 377 – 382, DOI: 10.1016/j.ijnonlinmec.2007.12.021.

Downloads

Published

18-09-2023
CITATION

How to Cite

Srisailam, B., Reddy, K. S., Narender, G., & Malga, B. S. (2023). MHD Stagnation-Point Flow with Viscous Dissipation and Chemical Reaction Effects: Numerical Study. Communications in Mathematics and Applications, 14(2), 759–773. https://doi.org/10.26713/cma.v14i2.2038

Issue

Section

Research Article