A New Approach to Multivalued Certain Contraction Mappings

Authors

  • Cafer Aydın Department of Mathematics, Kahramanmaraş Sütçüimam University, Kahramanmaraş 46040
  • Seher Sultan Yeşilkaya Institute of Science and Technology, Kahramanmaraş Sütçü ć°mam University, Kahramanmaras, 46040, Turkey

DOI:

https://doi.org/10.26713/cma.v11i2.1330

Keywords:

Fixed point, f-weakly compatible mappings, Gp-metric space, Multivalued mappings

Abstract

In the submit study, we establish the notion of generalization of partial Hausdorff metric space. Also, we state an extension of the concept of f-weak compatibility of Pathak [12] on metric space in generalization of partial metric space. We introduced some common fixed point theorems for multivalued mappings satisfying generalized weak contraction conditions on a complete Gp metric spaces. Also, a example is given to illustrate the main theorem. Further, our theorems generalize several formerly obtained fixed point results.

Downloads

References

Y. I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in New Results in Operator Theory and its Applications, I. Gohberg and Y. Lyubich (editor), Birkhäuser, Basel (1997), pp. 7 – 22, DOI: 10.1007/978-3-0348-8910-0_2.

N. Assad and W. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific Journal of Mathematics 43(3) (1972), 553 – 562, https://projecteuclid.org/euclid.pjm/1102959350.

H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology and its Applications 159(14) 159 (2012), 3234 – 3242, DOI: 10.1016/j.topol.2012.06.012.

H. Aydi, E. Karapıınar and P. Salimi, Some fixed point results in Gp metric spaces, Journal of Applied Mathematics 2012 (2012), Article ID 891713, 15 pages, DOI: 10.1155/2012/891713.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae 3 (1922), 133 – 181, DOI: 10.4064/fm-3-1-133-181.

S. B. Choudhurya and A. Kundub, ((phi,alpha,beta))-weak contractions in partially ordered metric spaces, Applied Mathematics Letters 25 (2012), 6 – 10, DOI: 10.1016/j.aml.2011.06.028.

D. Doric, Common fixed point for generalized ((phi,psi))-weak contractions, Applied Mathematics Letters 22(2) (2009), 1896 – 1900, DOI: 10.1016/j.aml.2009.08.001.

P. N. Dutta and B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory and Applications 1 (2008), Article ID 406368, DOI: 10.1155/2008/406368.

L. Gajic, Z. Kadelburg and S. Radenovic, Gp-metric spaces-symmetric and asymmetric, Scientific Publications of the State University of Novi Pazar Ser. A. Appl. Math. Inform. and Mech. 9(1) (2017), 37 – 46, http://scindeks-clanci.ceon.rs/data/pdf/2217-5539/2017/2217-55391701037G.pdf.

A. Kaewcharoen and A. Kaewkhao, Common fixed points for single valued and multivalued mapping in G metric spaces, International Journal of Mathematical Analysis 5(36) (2011), 1775 – 1790, http://www.m-hikari.com/ijma/ijma-2011/ijma-33-36-2011/kaewcharoenIJMA33-36-2011.pdf. .

S. B. Nadler, Multivalued contraction mappings, Pacific Journal of Mathematics 30(2) (1969), 475 – 488, https://msp.org/pjm/1969/30-2/pjm-v30-n2-p12-s.pdf.

H. K. Pathak, Fixed points for weak compatible multi-valued and single-valued mapping, Acta Mathematica Hungarica 67(1-2) (1995), 69 – 78, DOI: 10.1007/BF01874520.

B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis 47(4) (2001), 2683 – 2693, DOI: 10.1016/S0362-546X(01)00388-1.

M. R. A. Zand and A. D. Nezhad, A generalization of partial metric spaces, Journal of Contemporary Applied Mathematics 24 (2011), 86 – 93, https://www.researchgate.net/publication/284286285_A_generalization_of_partial_metric_spaces.

Downloads

Published

30-06-2020
CITATION

How to Cite

Aydın, C., & Yeşilkaya, S. S. (2020). A New Approach to Multivalued Certain Contraction Mappings. Communications in Mathematics and Applications, 11(2), 241–252. https://doi.org/10.26713/cma.v11i2.1330

Issue

Section

Research Article