Weighted \((k,n)\)-arcs of Type \((n-q,n)\) and Maximum Size of \((h,m)\)-arcs in \(\mathrm{PG}(2,q)\)

Authors

  • Mustafa T. Yaseen Department of Business Administration, Shatt Al-Arab University College, Basrah
  • Ali Hasan Ali Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah
  • Ibrahim A. Shanan Business Management Techniques Department, Management Technical College, Southern Technical University, Basrah

DOI:

https://doi.org/10.26713/cma.v10i3.1275

Keywords:

\((k, n)\)-arcs, Weighted \((k, n)\)-arc, \(\mathrm{PG}(2, q)\), \text{prime})\), Projective plane, Galois plane, Algebraic geometry

Abstract

In this paper, we introduce a generalized weighted \((k, n)\)-arc of two types in the projective plane of order \(q\), where \(q\) is an odd prime number. The sided result of this work is finding the largest size of a complete \((h, m)\)-arcs in \(\mathrm{PG}(2, q)\), where \(h\) represents a point of weight zero of a weighted \((k, n)\)-arc. Also, we prove that a \(\big(\frac{q(q-1)}{2}+1, \frac{q+1}{2}\big)\)-arc is a maximal arc in \(\mathrm{PG}(2, q)\).

Downloads

Download data is not yet available.

References

K. Coolsaet and H. Sticker, The complete ((k,3))-arcs of (PG(2,q)), (qge 13), J. Combin. Designs 20 (2012), 89–111, DOI: 10.1002/jcd.20293.

E. D'Agostini, Alcune osservazioni sui ((k,n; f))-archi di un piano finite, Atti Accad. Sec. 1st. Bologna Rend 6 (1979), 211–218, https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&sciodt=0%2C5&cites=6038520516372108545&scipsc=&q=Alcune+osservazioni+sui+%28k%2C+n%3B+f+%29+%E2%80%93+archi+di+un+piano+finite+&btnG=.

E. D'Agostini, Sulla caratterizzazione delle ((k,n; f))-calotte di tipo (n¡2,n), Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 263–275, https://www.researchgate.net/publication/264911447_Sulla_caratterizzazione_delle_knf-calotte_di_tipo_n-2n.

F. K. Hameed, Weighted ((k,n))-arcs in the projective plane of order nine, Ph.D Thesis, University of London, UK (1989), https://repository.royalholloway.ac.uk/items/9fab6d72-03d7-40b8-871f-5745b9fe167a/1/.

N. Hamilton, Degree 8 maximal arcs in (PG(2,2h)), (h) odd, Journal of Combinatorial Theory, Series A 100(2002), 265–276, DOI: 10.1006/jcta.2002.3297.

R. Hill and C. P. Love, On the ((22,4))-arcs in (PG(2,7)) and related codes, Discrete Mathematics 266 (1-3) (2003), 253–261, DOI: 10.1016/S0012-365X(02)00812-9.

J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Clarendon Press Oxford (1998), https://books.google.iq/books?id=RL7GbrBQwd8C.

S. Marcugini, A. Milani and F. Pambianco, Maximal ((n,3))-arcs in (PG(2,11)), Discrete Mathematics 208-209(1999), 421–426, DOI: 10.1016/S0012-365X(99)00202-2.

G. Raguso and L. Rella, Sui ((k,n; f))-archi tipo ((1,n)) di un piano proiettivo finite, Note di Matematica III (1983), 307–320, DOI: 10.1285/i15900932v3n2p307.

M. Tallini Scafati, Graphic curves on a galois plane, Atti del convegno di Geometria combinatoria e sue Applicazioni, Perugia, (1971), 413–419, https://scholar.google.com/scholar?q=Tallini%20Scafatti%2C%20M.%3A%20Graphic%20curves%20on%20a%20Galois%20plane.%20Atti%20del%20Convegno%20di%20Geometria%20Combinatoria%20e%20sua%20Applicazioni%20%28Univ.%20de%20Perugia%2C%201970%29%20Universita%20de%20Perugia%20%281971%29%2C%20413%E2%80%93419.

B. J. Wilson, ((k,n; f))-arcs and caps in finite projective spaces, Annals of Discrete Mathematics 30 (1986), 355–362, DOI: 10.1016/S0304-0208(08)73155-4.

Downloads

Published

30-09-2019
CITATION

How to Cite

Yaseen, M. T., Ali, A. H., & Shanan, I. A. (2019). Weighted \((k,n)\)-arcs of Type \((n-q,n)\) and Maximum Size of \((h,m)\)-arcs in \(\mathrm{PG}(2,q)\). Communications in Mathematics and Applications, 10(3), 361–368. https://doi.org/10.26713/cma.v10i3.1275

Issue

Section

Research Article