Semi Unit Graphs of Commutative Semi Rings

Authors

  • Yaqoub Ahmed Department of Mathematics, GC University, Lahore
  • M. Aslam Department of Mathematics, GC University, Lahore

DOI:

https://doi.org/10.26713/cma.v10i3.1203

Keywords:

Semirings, Semiunits, k-ideals, Graphs

Abstract

In this article, we introduce semi unit graph of semiring S denoted by ξ(S). The set of all elements of $S$ are vertices of this graph where distinct vertices x and y are adjacent if and only if x+y is a semiunit of S. We investigate some of the properties and characterization results on connectedness, distance, diameter, girth, completeness and connectivity of ξ(S).

Downloads

References

P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412 – 416, DOI: 10.1090/S0002-9939-1969-0237575-4.

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), 434 – 447, DOI: 10.1006/jabr.1998.7840.

S. E. Atani, An ideal based zero divisor graph of commutative rings, Glasnik Math. 44 (2009), 141 – 153, DOI: 10.3336/gm.44.1.07.

S. E. Atani, The ideal theory in quotients of commutative semirings, Glasnik Math. Ser. III 42 (2007), 301 – 308, DOI: 10.3336/gm.42.2.05.

S. E. Atani, The zero-divisor graph with respect to ideals of a commutative semirings, Glasnik Math. 43 (2008), 309 – 320, DOI: 10.3336/gm.43.2.06.

S. E. Atani and R. Atani, Some remarks on partitioning semirings, An. St. Univ. Ovidius Constanta 18 (2010), 49 – 62, https://www.academia.edu/487767/.

R. E. Atani and S. E. Atani, Ideal theory in commutative semirings, Bul. Acad. Stiinte Repub. Mold. Mat. 2 (2008), 14 – 23, http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=basm&paperid=15&option_lang=eng.

I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208 – 226, DOI: 10.1016/0021-8693(88)90202-5.

J. S. Golan, Semi rings and Affine Equations over Them: Theory and Applications, Springer Science í… Business Media, Dordrecht (2003), DOI: 10.1007/978-94-017-0383-3.

J. S. Golan, Semirings and their Applications, Kluwer Academic Pub., Dordrecht (1999), DOI: 10.1007/978-94-015-9333-5.

J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical (1992), https://catalog.princeton.edu/catalog/724763.

V. Gupta and J. N. Chaudhari, Right pi-regular semirings, Sarajevo J. Math. 2 (2006), 3 – 9, http://www.anubih.ba/Journals/vol-2,no-1,y06/02vishnugupta1.pdf.

U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, Series in Algebra: Vol. 5, World Scientific Publishing Co. Ltd., Singapore (1993), DOI: 10.1142/3903.

O. Ore, Note on Hamilton circuits, American Mathematical Monthly 67(1) (1960), 55, OI: 10.2307/2308928.

M. K. Sen and M. R. Adhikari, On maximal k-ideals of simirings, Proc. Amer. Math. Soc. 118 (1993), 699 – 703, DOI: 10.1090/S0002-9939-1993-1132423-6.

W. D. Wallis, A Beginner's Guide to Graph Theory, 2nd edition, Springer (2007), DOI: 10.1007/978-0-8176-4580-9.

Downloads

Published

30-09-2019
CITATION

How to Cite

Ahmed, Y., & Aslam, M. (2019). Semi Unit Graphs of Commutative Semi Rings. Communications in Mathematics and Applications, 10(3), 519–530. https://doi.org/10.26713/cma.v10i3.1203

Issue

Section

Research Article