Bounds for Toader Mean in Terms of Arithmetic and Second Seiffert Means

Authors

  • Zai-Yin He College of Mathematics and Econometrics, Hunan University, Changsha 410082
  • Yue-Ping Jiang College of Mathematics and Econometrics, Hunan University, Changsha 410082
  • Yu-Ming Chu Department of Mathematics, Huzhou University, Huzhou 313000

DOI:

https://doi.org/10.26713/cma.v10i3.1200

Keywords:

Toader mean, Second Seiffert mean, Arithmetic mean

Abstract

In the article, we prove that the double inequalities
\begin{align*}
&\alpha_{1}T(a,b)+(1-\alpha_{1})A(a,b)<TD(a,b)<\beta_{1}T(a,b)+(1-\beta_{1})A(a,b),\\
&T^{\alpha_{2}}(a,b)A^{1-\alpha_{2}}(a,b)<TD(a,b)<T^{\beta_{2}}(a,b)A^{1-\beta_{2}}(a,b)
\end{align*}
hold for all \(a,b>0\) with \(a\neq b\) if and only if \(\alpha_{1}\leq
3/4\), \(\beta_{1}\geq1\), \(\alpha_{2}\leq 3/4\) and \(\beta_{2}\geq 1\),
where \(A(a,b)\), \(TD(a,b)\) and \(T(a,b)\) are the arithmetic, Toader and second Seiffert means of \(a\) and \(b\), respectively.

Downloads

Download data is not yet available.

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York (1965), URL: https://books.google.co.in/books?hl=en&lr=&id=MtU8uP7XMvoC&oi=fnd&pg=PR9&ots=-FUIJrO3Ki&sig=N6XhhtXn-8EdvhR6ZCX7bCl5Z38&redir_esc=y#v=onepage&q&f=false.

J. M. Borwein and P. B. Borwein, Pi and AGM, John Wiley & Sons, New York (1987), URL: https://carma.newcastle.edu.au/jon/Preprints/Papers/Submitted%20Papers/Elliptic%20moments/pi-agm.pdf.

G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math. 192(1) (2000), 1 – 37, DOI: 10.2140/pjm.2000.192.1.

Y.-M. Chu, M.-K. Wang and Y.-F. Qiu, On Alzer and Qiu's conjecture for complete elliptic integral and inverse hyperbolic tangent function, Abstr. Appl. Anal. 2011 (2011), Article ID 697547, 7 pages, DOI: 10.1155/2011/697547.

G.-D. Wang, X.-H. Zhang and Y.-P. Jiang, Concavity with respect to Hölder means involving the generalized Grötzsch function, J. Math. Anal. Appl. 379(1) (2011), 200 – 204, DOI: 10.1016/j.jmaa.2010.12.055.

M.-K. Wang, Y.-M. Chu, Y.-F. Qiu and S.-L. Qiu, An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett. 24(6) (2011), 887 – 890, DOI: 10.1016/j.aml.2010.12.044.

Y.-M. Chu, Y.-F. Qiu and M.-K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct. 23(7) (2012), 521 – 527, DOI: 10.1080/10652469.2011.609482.

Y.-M. Chu, M.-K. Wang, Y.-P. Jiang and S.-L. Qiu, Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl. 395(2) (2012), 637 – 642, DOI: 10.1016/j.jmaa.2012.05.083.

Y.-M. Chu, M.-K. Wang, S.-L. Qiu and Y.-P. Jiang, Bounds for complete integrals of the second kind with applications, Comput. Math. Appl. 63(7) (2012), 1177 – 1184, DOI: 10.1016/j.camwa.2011.12.038.

M.-K. Wang, S.-L. Qiu, Y.-M. Chu and Y.-P. Jiang, Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl. 385(1) (2012), 221 – 229, DOI: 10.1016/j.jmaa.2011.06.039.

M.-K. Wang, Y.-M. Chu, S.-L. Qiu and Y.-P. Jiang, Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl. 388(2) (2012), 1141 – 1146, DOI: 10.1016/j.jmaa.2011.10.063.

Y.-M. Chu, S.-L. Qiu and M.-K. Wang, Sharp inequalities involving the power mean and complete elliptic integral of the first kind, Rocky Mountain J. Math. 43(3) (2013), 1489 – 1496, DOI: 10.1216/RMJ-2013-43-5-1489.

M.-K. Wang and Y.-M. Chu, Asymptotical bounds for complete elliptic integrals of the second kind, J. Math. Anal. Appl. 402(1) (2013), 119 – 126, DOI: 10.1016/j.jmaa.2013.01.016.

M.-K. Wang, Y.-M. Chu and S.-L. Qiu, Some monotonicity properties of generalized elliptic integrals with applications, Math. Inequal. Appl. 16(3) (2013), 671 – 677, DOI: 10.7153/mia-16-50.

G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality involving the complete elliptic integrals, Rocky Mountain J. Math. 44(5) (2014), 1661 – 1667, DOI: 10.1216/RMJ-2014-44-5-1661.

M.-K. Wang, Y.-M. Chu and Y.-Q. Song, Ramanujan's cubic transformation and generalized modular equation, Sci. China. Math. 58(11) (2015), 2387 – 2404, DOI: 10.1007/s11425-015-5023-3.

M.-K. Wang, Y.-M. Chu and S.-L. Qiu, Sharp bounds for generalized elliptic integrals of the first kind, J. Math. Anal. Appl. 429(2) (2015), 744 – 757, DOI: 10.1016/j.jmaa.2015.04.035.

M.-K. Wang, Y.-M. Chu and Y.-P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math. 46(2) (2016), 679 – 691, DOI: 10.1216/RMJ-2016-46-2-679.

M.-K. Wang, Y.-M. Chu and Y.-Q. Song, Asymptotical formulas for Gaussian and generalized hypergeometric functions, Appl. Math. Comput. 276 (2016), 44 – 60, DOI: 10.1016/j.amc.2015.11.088.

Z.-H. Yang, W.-M. Qian, Y.-M. Chu andW. Zhang, Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl. 2017 (2017), Article 106, 13 pages, DOI: 10.1186/s13660-017-1383-2.

W.-M. Qian and Y.-M. Chu, Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl. 2017 (2017), Article 274, 10 pages, DOI: 10.1186/s13660-017-1550-5.

M.-K. Wang and Y.-M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci. 37B(3) (2017), 607 – 622, DOI: 10.1016/S0252-9602(17)30026-7.

Z.-H. Yang and Y.-M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl. 20(3) (2017), 729 – 735, DOI: 10.7153/mia-20-46.

M.-K. Wang, Y.-M. Li and Y.-M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J. 46(1) (2018), 189 – 200, DOI: 10.1007/s11139-017-9888-3.

Z.-H. Yang, W.-M. Qian, Y.-M. Chu and W. Zhang, On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl. 462(1) (2018), 1714 – 1726, DOI: 10.1016/j.jmaa.2018.03.005.

M.-K. Wang and Y.-M. Chu, Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl. 21(2) (2018), 521 – 537, DOI: 10.7153/mia-2018-21-38.

M.-K. Wang, S.-L. Qiu and Y.-M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion, Math. Inequal. Appl. 21(3) (2018), 629 – 648, DOI: 10.7153/mia-2018-21-46.

T.-R. Huang, S.-Y. Tan, X.-Y. Ma and Y.-M. Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl. 2018 (2018), Article ID 239, 11 pages, DOI: 10.1186/s13660-018-1828-2.

T.-H. Zhao, M.-K. Wang, W. Zhang and Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeoemtric function, J. Inequal. Appl. 2018 (2018), Article 251, 15 pages, DOI: 10.1186/s13660-018-1848-y.

Z.-H. Yang, W.-M. Qian and Y.-M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl. 21(4) (2018), 1185 – 1199, DOI: 10.7153/mia-2018-21-82.

Z.-H. Yang, Y.-M. Chu and W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput. 348 (2019), 552 – 564, DOI: 10.1016/j.amc.2018.12.025.

M.-K.Wang, Y.-M. Chu andW. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J. 49(3) (2019), 653 – 668, DOI: 10.1007/s11139-018-0130-8.

Y.-F. Qiu, M.-K.Wang, Y.-M. Chu and G.-D.Wang, Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal. 5(3) (2011), 301 – 306, DOI: 10.7153/jmi-05-27.

G. Toader, Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl. 218(2) (1998), 358 – 368, DOI: 10.1006/jmaa.1997.5766.

Y.-M. Chu, M.-K. Wang, S.-L. Qiu and Y.-F. Qiu, Sharp generalized Seiffert mean bounds for Toader mean, Abstr. Appl. Anal. 2011 (2011), Article ID 605259, 8 pages, DOI: 10.1155/2011/605259.

Y.-M. Chu and M.-K. Wang, Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Appl. 2012 (2012), Article ID 830585, 11 pages, DOI: 10.1155/2012/830585.

Y.-M. Chu, M.-K. Wang and X.-Y. Ma, Sharp bounds for Toader mean in terms of contraharmonic mean with applications, J. Math. Inequal. 7(2) (2013), 161 – 166, DOI: 10.7153/jmi-07-15.

W.-F. Xia, Y.-M. Chu and G.-D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal. 2010 (2010), Article ID 604804, 9 pages, DOI: 10.1155/2010/604804.

Y.-M. Chu and W.-F. Xia, Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl. 60(1) (2010), 83 – 89, DOI: 10.1016/j.camwa.2010.04.032.

Y.-M. Chu, Y.-F. Qiu and M.-K. Wang, Sharp power mean bounds for the combination of Seiffert and geometric means, Abstr. Appl. Anal. 2010 (2010), Article ID 108920, 12 pages, DOI: 10.1155/2010/108920.

Y.-M. Chu, S.-S. Wang and C. Zong, Optimal lower power mean bound for the convex combination of harmonic and logarithmic means, Abstr. Appl. Anal. 2011 (2011), Article ID 520648, 9 pages, DOI: 10.1155/2011/520648.

G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality for the Grötzch ring function, Math. Inequal. Appl. 14(4) (2011), 833 – 837, DOI: 10.7153/mia-14-69.

W.-F. Xia, W. Janous and Y.-M. Chu, The optimal convex combination bounds of arithmetic and harmonic mean in terms of power mean, J. Math. Inequal. 6(2) (2012), 241 – 248, DOI: 10.7153/jmi-06-24.

Z.-Y. He, W.-M. Qian, Y.-L. Jiang, Y.-Q. Song and Y.-M. Chu, Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of contraharmonic mean, Abstr. Appl. Anal. 2013 (2013), Article ID 903982, 5 pages, DOI: 10.1155/2013/903982.

W.-D. Jiang, J. Cao and F. Qi, Sharp inequalities for bounding Seiffert mean in terms of the arithmetic, centroidal, and contra-harmonic means, Math. Slovaca 66(5) (2016), 1115 – 1118, DOI: 10.1515/ms-2016-0208.

M.-K. Wang, Y.-F. Qiu and Y.-M. Chu, Sharp bounds for Seiffert means in terms of Lehmer means, J. Math. Inequal. 4(4) (2010), 581 – 586, DOI: 10.7153/jmi-04-51.

Y.-M. Li, M.-K. Wang and Y.-M. Chu, Sharp power mean bounds for Seiffert mean, Appl. Math. J. Chinese Univ. 29B(1) (2014), 101 – 107, DOI: 10.1007/s11766-014-3008-6.

Y.-M. Chu and M.-K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math. 61(3-4) (2012), 223 – 229, DOI: 10.1007/s00025-010-0090-9.

Y.-M. Chu, M.-K. Wang and S.-L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci. 122(1) (2012), 41 – 51, DOI: 10.1007/s12044-012-0062-y.

Y.-Q. Song, W.-D. Jiang, Y.-M. Chu and D.-D. Yan, Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means, J. Math. Inequal. 7(4) (2013), 751 – 757, DOI: 10.7153/jmi-07-68.

R. W. Barnard, K. Pearce and K. C. Richards, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal. 31(3) (2000), 693 – 699, DOI: 10.1137/S0036141098341575.

H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math. 172(2) (2004), 289 – 312, DOI: 10.1016/j.cam.2004.02.009.

G. D. Anderson, M. K. Vamanamurthy and M. K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York (1997), DOI: 10.1007/BFb0094235.

Downloads

Published

30-09-2019
CITATION

How to Cite

He, Z.-Y., Jiang, Y.-P., & Chu, Y.-M. (2019). Bounds for Toader Mean in Terms of Arithmetic and Second Seiffert Means. Communications in Mathematics and Applications, 10(3), 561–570. https://doi.org/10.26713/cma.v10i3.1200

Issue

Section

Research Article