Existence and Convergence Theorems For Best Proximity Points of Proximal Multi-Valued Nonexpansive Mappings
DOI:
https://doi.org/10.26713/cma.v10i3.1199Keywords:
Proximal multi-valued nonexpansive, Best proximity pointAbstract
The concepts of proximal contraction and proximal nonexpansive mapping have been investigated and extended in many direction. However, most of these works concern only single-valued mappings. So, in this paper, we introduce a concept of proximal nonexpansive for non-self set-valued mappings and prove the existence of best proximity point for such mappings under appropriate conditions. We also provide an algorithm to approximate a best proximity point of such mappings, and prove its convergence theorem. Moreover, a numerical example supporting our main results is also given.
Downloads
References
S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math. 3 (1922), 133 – 181, http://eudml.org/doc/213289.
S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl. 151 (2011), 210 – 216, DOI: 10.1007/s10957-011-9869-4.
S. S. Basha and N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl. 42 (2012), DOI: 10.1186/1687-1812-2012-42.
P. Z. Daffer and H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192 (1995), 655 – 666, DOI: 10.1006/jmaa.1995.1194.
T. D. Benavides and P. L. Ramírez, Fixed point theorems for multivalued nonexpansive mappings without uniform convexity, Abstr. Appl. Anal. 2003 (2003), 375 – 386, DOI: 10.1155/S1085337503203080.
E. L. Dozo, Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286 – 292, DOI: 10.1090/S0002-9939-1973-0310718-0.
A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001 – 1006, DOI: 10.1016/j.jmaa.2005.10.081.
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 122 (1969), 234 – 240, DOI: 10.1007/BF01110225.
A. Fernández-León, Best proximity points for proximal contractions, J. Nonlinear Convex Anal. 15 (2014), 313 – 324, http://hdl.handle.net/11441/43082.
M. Gabeleh, Best proximity points for weak proximal contractions, Bull. Malays. Math. Sci. Soc. 38(1) (2015), 143 – 154, DOI: 10.1007/s40840-014-0009-9.
M. Gabeleh, Best proximity point theorems via proximal non-self mappings, J. Optim. Theory Appl. 164 (2015), 565 – 576, DOI: 10.1007/s10957-014-0585-8.
K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115 – 123, DOI: 10.2307/2047831.
E. Karapinar, Best proximity points of cyclic mappings, Appl. Math. Lett. 25 (2012), 1761 – 1766, DOI: 10.1016/j.aml.2012.02.008.
W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), 433 – 446, DOI: 10.1016/j.jmaa.2005.04.053.
N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177 – 188, DOI: 10.1016/0022-247X(89)90214-X.
S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475 – 487, DOI: 10.1007/BF02771543.
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591 – 597, DOI: 10.1090/S0002-9904-1967-11761-0.
S. Pirvbavafa and S. M. Vaezpour, Equilibria of free abstract economies via best proximity point theorems, Boletín de la Sociedad Matemática Mexicana 24(2) (2018), 471 – 481, DOI: 10.1007/s40590-017-0175-5.
Sh. Rezapour, M. Derafshpour and N. Shahzad, Best proximity points of cyclic (phi)-contractions on reflexive Banach spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 946178, DOI: 10.1155/2010/946178.
C.-K. Zhong, J. Zhu and P.-H. Zhao, An extension of multi-valued contraction mappings and fixed points, Proc. Amer. Math. Soc. 128 (2000), 2439 – 2444, DOI: 10.1090/S0002-9939-99-05318-6.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.