Degree-Magic Labelings on the Join and Composition of Complete Tripartite Graphs
DOI:
https://doi.org/10.26713/cma.v10i3.1157Keywords:
Tripartite graph, Supermagic graph, Degree-magic graph, Balanced degree-magic graphAbstract
A graph is called supermagic if there is a labeling of edges, where all edges are differently labeled with consecutive positive integers such that the sum of the labels of all edges, which are incident to each vertex of this graph, is a constant.
A graph \(G\) is called degree-magic if all edges can be labeled by integers \(1,2,\ldots ,|E(G)|\) so that the sum of the labels of the edges which are incident to any vertex \(v\) is equal to \((1+|E(G)|)\deg(v)/2\). Degree-magic graphs extend supermagic regular graphs. In this paper, the necessary and sufficient conditions for the existence of degree-magic labelings of graphs obtained by taking the join and composition of complete tripartite graphs are found.
Downloads
References
L'. Bezegová, Balanced degree-magic complements of bipartite graphs, Discrete Math. 313 (2013), 1918 – 1923, DOI: 10.1016/j.disc.2013.05.002.
L'. Bezegová and J. Ivanćo, An extension of regular supermagic graphs, Discrete Math. 310 (2010), 3571 – 3578, DOI: 10.1016/j.disc.2010.09.005.
L'. Bezegová and J. Ivanćo, On conservative and supermagic graphs, Discrete Math. 311 (2011), 2428 – 2436, DOI: 10.1016/j.disc.2011.07.014.
L'. Bezegová and J. Ivanćo, A characterization of complete tripartite degree-magic graphs, Discuss. Math. Graph Theory 32 (2012), 243 – 253, DOI: 10.7151/dmgt.1608.
L'. Bezegová and J. Ivanćo, Number of edges in degree-magic graphs, Discrete Math. 313 (2013), 1349 – 1357, DOI: 10.1016/j.disc.2013.02.018.
J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2009), #DS6, https://www.combinatorics.org/files/Surveys/ds6/ds6v12-2009.pdf.
E. Salehi, Integer-magic spectra of cycle related graphs, Iran. J. Math. Sci. Inform. 1 (2006), 53 – 63, DOI: 10.7508/ijmsi.2006.02.004.
J. Sedláćek, Theory of graphs and its applications, in: Problem 27: Proc. Symp. Smolenice Praha, (1963), 163 – 164, https://searchworks.stanford.edu/view/1365109.
B. M. Stewart, Magic graphs, Canad. J. Math. 18 (1966), 1031 – 1059, DOI: 10.4153/CJM-1966-104-7.
M. T. Varela, On barycentric-magic graphs, Iran. J. Math. Sci. Inform. 10 (2015), 121 – 129, DOI: 10.7508/ijmsi.2015.01.009.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.