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1. Introduction
A surface of revolution is generated by rotating a planar curve. Moving a line generates a ruled
surface. Moving spheres and cones yield canal surfaces and embankment surfaces, respectively.
In the literature, there are lots of studies about different geometric properties of surfaces of
revolution, ruled surfaces and canal surfaces (see [3], [4], [6], [12], [16], [17] and etc.). We know
that,
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if Λ : (r(t), z(t)), t ∈ [a,b], is a parametric curve in (r − z)-plane with r > 0, then Φ :=
(r(t)cosϕ, r(t)sinϕ, z(t)), t ∈ [a,b], ϕ ∈ [0,2π], is called parametric surface of revolution and
if Λ : f (r, z) = 0 is an implicit curve in (r− z)-plane with r > 0, then Φ : f (

√
x2 + y2, z) is called

implicit surface of revolution.
If Λ : X= c(t), t ∈ [a,b], is a regular Cn, n ≥ 1 curve in E3 and r(t), t ∈ [a,b], nonzero vectors

of class Cn, then the surface Φ : X = X(s, t) := c(t)+ sr(t), (s, t) ∈ [a,b]× [c,d], is called ruled
surface, any line X = X(s, t =constant) is called ruling and Λ is called the base curve of the
parametrization.

Also, if a one parameter family of regular implicit surfaces Φc : f (X, c) = 0, c ∈ [c1, c2],
is given, then the intersection curve of two neighbored surfaces Φc and Φc+∆c fulfills the
two equations f (X, c) = 0 and f (X, c +∆c) = 0. We consider the limit for ∆c → 0 and get
fc(X, c)= lim

∆→0

f (X,c)− f (X,c+∆c)
∆c = 0. The last equation motivates the following definition:

If Φc : f (X, c)= 0, c ∈ [c1, c2], is a one parameter family of regular implicit C2-surfaces, then
the surface which is defined the two equations f (X, c)= 0 and fc(X, c)= 0 is called envelope of
the given family of surfaces. With the aid of this definition, one can define the following surfaces:

Let Λ : X =α(u) = (a(u),b(u), c(u)) be a regular space curve and r(t) be a C1-function with
r > 0 and |ṙ| < ‖ċ‖. The envelope of the one parameter family of spheres

f (X;u) := (x−α(u))2 − r(u)2 = 0 (1)

is called a canal surface and Λ its directrix. Also, the parametric representation of canal surfaces
can be obtained by

X=X(u,v) :=α(u)− r(u)ṙ(u)
‖α̇(u)‖2 α̇(u)+ r(u)

√
‖α̇(u)‖2 − ṙ(u)2

‖α̇(u)‖ (e1(u)cos(v)+ e2(u)sin(v)),

with {e1, e2} an orthonormal base orthogonal to tangent vector α̇. In case of a constant radius
function, the envelope is called pipe surface (see [11]). Canal surfaces (especially pipe surfaces)
have been applied to many fields, such as the solid and the surface modeling for CAD/CAM,
construction of blending surfaces, shape re-construction and so on. One can see the details for
geometric and applied fields of canal surfaces in [1], [7], [13], [14], [15], [18] and etc.

An embankment surface is an envelope of the one parameter family of cones which is stated
in the following and this surface type is very important for engineers who draw the embankment
constructions’ plans (see [8] for details of embankment constructions).

On the other hand, it is important to have the knowledge of the Gaussian and mean
curvatures for future structural engineers. For example: Tensile fabric structure (e.g. membrane
roof) in a uniform state of tensile prestress behaves like a soap film stretched over a wire which
is bent in a shape of a closed space curve. Soap film assumes a form which has the minimal
area relative to all other surfaces stretched over the same wire; this surface is therefore called
minimal surface. It can be shown that mean curvature vanishes at each point of that surface [9].

In this study, firstly we recall the implicit formulae of an embankment surface and we obtain
a parametric representation of embankment surfaces and we give an example for embankment
surfaces. Later, we define the notions of embankmentlike surfaces and tubembankmentlike
surfaces. Furthermore, we obtain some embankmentlike and tubembankmentlike surface
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examples with the aid of different directrix and draw these directrix and surfaces. Also, we
find the Gaussian and mean (and second Gaussian) curvatures of these surfaces and draw the
Gaussian and mean (and second Gaussian) curvature functions’ graphics. Besides, we draw
graphics which show the variations of Gaussian and mean (and second Gaussian) curvatures on
related surfaces. When making these visualizations, we use Mathematica.

2. Preliminaries
Here, we recall Frenet-Serret formulae of space curves and Gaussian, mean and second Gaussian
curvatures of surfaces in Euclidean 3-space. Also, we recall some basic concepts for quaternions.

Let E3 be a 3-dimensional Euclidean space with the standard inner product g : dx2
1 +dx2

2 +
dx2

3, where (x1, x2, x3) is a standard rectangular coordinate system of E3. Also, let α : I → E3 be
a regular curve with α̇(t)= dα

dt (t) 6= 0. If T , N and B are unit tangent vector field, unit principal
normal vector field and unit binormal vector field of α, respectively, then {T, N,B} is called the
Frenet frame of α and the Frenet-Serret formulae is given byT ′

N ′

B′

=
 0 κ 0
−κ 0 τ

0 −τ 0

T
N
B

 , (2)

where

g(T,T)= g(N, N)= g(B,B)= 1, g(T, N)= g(N,B)= g(B,T)= 0. (3)

Here κ and τ are curvature and torsion of α, respectively [5].
Let we denote a surface Γ in E3 by

Γ(u,v)= (Γ1(u,v),Γ2(u,v),Γ3(u,v))

and N be the standard unit normal vector field on the surface Γ defined by

N = Γu ×Γv

‖Γu ×Γv‖
,

where Γu = ∂Γ(u,v)
∂u . Then the first fundamental form I and the second fundamental form I I of

the surface Γ are defined by

I = g11du2 +2g12dudv+ g22dv2,

I I = L11du2 +2L12dudv+L22dv2,

respectively, where we put

g11 = g(Γu,Γu), g12 = g(Γu,Γv), g22 = g(Γv,Γv),

L11 = g(Γuu, N), L12 = g(Γuv, N), L22 = g(Γvv, N).

Using classical notation above, the Gaussian curvature K , mean curvature H and second
Gaussian curvature K I I are defined by

K = L11L22 −L2
12

g11 g22 − g2
12

, (4)

H = g22L11 −2g12L12 + g11L22

2(g11 g22 − g2
12)

(5)
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and

K I I = 1
(L11L22 −L2

12)2



∣∣∣∣∣∣∣∣
−1

2 L11vv +L12uv − 1
2 L22uu

1
2 L11u L22u − 1

2 L11v

L12v − 1
2 L22u L11 L12

1
2 L22v L12 L22

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
0 1

2 L11v
1
2 L22u

1
2 L11v L11 L12
1
2 L22u L12 L22

∣∣∣∣∣∣∣∣


, (6)

respectively [19]-[20]. We know that, a surface is called (X ,Y )-Weingarten surface if it satisfies
Φ(X ,Y )= XuYv − XvYu = 0, where (X ,Y ) ∈ {(H,K), (H,K I I), (K ,K I I)} [17].

Now, let us recall some notions about quaternions. We know that, the algebra H = {q =
a01+a1i+a2 j+a3k : a0,a1,a2,a3 ∈R} of quaternions is defined as the four dimensional vector
space R4 having a basis {1, i, j,k} with the following properties:

i2 = j2 = k2 = i× j×k =−1, i× j =− j× i = k.

So, H is an associative and not commutative algebra, 1 is identity element of H and i, j and k
are standard orthonormal basis in R3. A quaternion can also be written as q = (a0,w)= Sq+V q,
where Sq = a0 ∈R is the scalar component and V q = w ∈R3 is the vector component of q. For
two quaternions q = Sq+V q, p = Sp+V p and λ ∈R, we have

q+ p = (Sq+Sp)+ (V q+V p),

λq =λSq+λV q

and also, quaternion product of two quaternions is defined as

qxp = SqSp− g(V q,V p)+SqV p+SpV q+V q×V p,

where g(V q,V p) and V q×V p denote the familiar dot and cross-products, respectively.
If ‖q‖ = 1, then the quaternion q is unitary and the unitary quaternion can be written in

the trigonometric form as q = cosθ+vsinθ, where v ∈R3 and ‖v‖ = 1 (see [1], [2], [10]).

3. Embankment Surfaces in E3

In this section, we obtain the parametric expression of an embankment surface in Euclidean
3-space and give a characterization for it using quaternions. Also, we create an example for
embankment surfaces.

Definition 1. Let Λ : X=α(u)= (α1(u),α2(u),α3(u)) be a regular space curve and m ∈R, m > 0
with |mα̇3| <

√
α̇1

2 + α̇2
2. Then the envelope of the one parameter family of cones

f (X;u) := (x−α1(u))2 + (y−α2(u))2 −m2(z−α3(u))2 = 0 (7)

is called an embankment surface and Λ its directrix (see [11]).

Let Γ be a parametrization of the envelope of cones defining the embankment surface given
by Γ(u,v)= (Γ1(u,v),Γ2(u,v),Γ3(u,v)); α(u)= (α1(u),α2(u),α3(u)) be a regular space curve with
non-zero curvature which is called directrix of embankment surface and m ∈ R, m > 0 with
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|mα̇3| <
√
α̇1

2 + α̇2
2. Then, from (7), the embankment surface can be written by

(Γ1(u,v)−α1(u))2 + (Γ2(u,v)−α2(u))2 −m2(Γ3(u,v)−α3(u))2

+ (Γ3(u,v)−α3(u))2 − (Γ3(u,v)−α3(u))2 = 0. (8)

From (8), we can write

g(Γ(u,v)−α(u),Γ(u,v)−α(u))= (m2 +1)(Γ3(u,v)−α3(u))2. (9)

On the other hand, the parametric representation of the embankment surface can be given by

Γ(u,v)−α(u)= r(u,v)T(u)+ s(u,v)N(u)+ t(u,v)B(u), (10)

where r, s, t are differentiable functions of u and v on the interval I . From (3) and (10), we have

g(Γ(u,v)−α(u),Γ(u,v)−α(u))= r2(u,v)+ s2(u,v)+ t2(u,v). (11)

Thus, from (9) and (11), we get

r2(u,v)+ s2(u,v)+ t2(u,v)= (m2 +1)(Γ3(u,v)−α3(u))2. (12)

Differentiating (12) with respect to u and v, we have

rru + ssu + ttu = (m2 +1)(Γ3(u,v)−α3(u))(Γ3(u,v)−α3(u))u (13)

and

rrv + ssv + ttv = (m2 +1)(Γ3(u,v)−α3(u))Γ3(u,v)v, (14)

respectively. Also, differentiating (10) with respect to u and v, and using (2) we get

Γ(u,v)u = (
∥∥α′(u)

∥∥+ ru − sκ)T + (rκ+ su − tτ)N + (sτ+ tu)B (15)

and

Γ(u,v)v = rvT + svN + tvB. (16)

Now, let us suppose that

g(Γ(u,v)−α(u),Γ(u,v)u)= 0 (17)

satisfies on embankment surface. Then, from (10), (15) and (17), we have∥∥α′∥∥ .r+ rru + ssu + ttu = 0. (18)

Thus, from (13) and (18), we obtain

r(u,v)=− (m2 +1)
‖α′(u)‖ (Γ3(u,v)−α3(u))(Γ3(u,v)−α3(u))u. (19)

Using (19) in (12), we get

s2(u,v)+ t2(u,v)= (m2 +1)(Γ3(u,v)−α3(u))2{1− (m2 +1)
‖α′(u)‖2 (Γ3(u,v)−α3(u))2

u} (20)

Hence, we can choose

s(u,v)=∓
p

m2 +1(Γ3(u,v)−α3(u))
√

1− (m2+1)
‖α′(u)‖2 (Γ3(u,v)−α3(u))2

u.cosv

t(u,v)=∓
p

m2 +1(Γ3(u,v)−α3(u))
√

1− (m2+1)
‖α′(u)‖2 (Γ3(u,v)−α3(u))2

u.sinv.

 (21)

Therefore, from (10), (19) and (21), we can state the following main theorem:
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Theorem 1. Let α : I ⊆ R→ E3 be a regular space curve with non-zero curvature. Then, the
parametrization of embankment surface Γe(u,v)= (Γe1(u,v),Γe2(u,v),Γe3(u,v)) can be given by

Γe(u,v)=α(u)− (m2 +1)
‖α′(u)‖ Ψ3(u,v)Ψ3(u,v)u.T(u)

∓
√

m2 +1Ψ3(u,v)

√
1− (m2 +1)

‖α′(u)‖2Ψ3(u,v)2
u.{cosv.N(u)+sinv.B(u)}, (22)

where Ψ3(u,v)=Γe3(u,v)−α3(u), m ∈R, m > 0 with |mα̇3| <
√
α̇2

1 + α̇2
2.

On the other hand, using the unit quaternion we can give the following characterization for
embankment surfaces.

Theorem 2. Let α : I ⊆ R → E3 be a unit speed directrix curve with non-zero curvature of
embankment surface Γe and q(u,v)= cosv+sinv.T(u) be a unit quaternion in S3 ⊂R4. Then,
the embankment surface Γe can be given by

Γe(u,v)=α(u)− (m2 +1)Ψ3(u,v)Ψ3(u,v)u.T(u)

∓
√

m2 +1Ψ3(u,v)
√

1− (m2 +1)Ψ3(u,v)2
u.q(u,v)×N(u). (23)

Proof. The proof is obvious from quaternion product and the definition of Frenet frame {T, N,B}
of α.

Here, let us give an example for embankment surfaces:

Example 1. Let us take directrix as

α(u)= (cos(u),sin(u),0), (24)

which is a circle in E3 and let us suppose that m =p
3. Thus, the embankment surface (22)

whose directrix is this circle can be obtained as

Γe(u,v)= (cos(u)+4Γ3(u,v)Γ3(u,v)u sin(u)−2Γ3(u,v)
√

1−4Γ3(u,v)2
u cos(u)cos(v),

sin(u)−4Γ3(u,v)Γ3(u,v)u cos(u)−2Γ3(u,v)
√

1−4Γ3(u,v)2
u sin(u)cos(v),

2Γ3(u,v)
√

1−4Γ3(u,v)2
u sin(v)). (25)

Since Γe(u,v)= (Γe1(u,v),Γe2(u,v),Γe3(u,v)), we can choose the third component of the surface
(25) as

Γe3(u,v)=
√

4sin2(v)−1
4sin(v)

.u. (26)

Thus, using (26) in (25), we can write the embankment surface as

Γe(u,v)=


cos(u)+u.sin(u).4sin2(v)−1

4sin2(v)
−u.cos(u)cos(v).

p
4sin2(v)−1
4sin(v) ,

sin(u)−u.cos(u).4sin2(v)−1
4sin2(v)

−u.sin(u)cos(v).
p

4sin2(v)−1
4sin(v) ,

p
4sin2(v)−1
4sin(v) .u

 . (27)

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 617–636, 2019



Embankment Surfaces in Euclidean 3-Space and Their Visualizations: A. Kazan and H. B. Karadağ 623

One can easily see that,

(Γe1(u,v)−α1(u))2 + (Γe2(u,v)−α2(u))2 −m2(Γe3(u,v)−α3(u))2 = 0

satisfies for (27) and so, it is an embankment surface. The graphics of the directrix (24) and
embankment surface (27) is given by Figure 1.

Figure 1. The directrix (24) and embankment surface (27)

Also, in Figure 2, one can see the Gaussian and mean curvatures functions’ graphics above
and the variations of Gaussian and mean curvatures on embankment surface (27) below.

Figure 2. Gaussian and mean curvatures functions’ graphics and the variations of Gaussian and mean
curvatures on embankment surface (27)

4. Embankmentlike Surfaces in E3

As one can see from Example 1, finding the third component of the embankment surface is very
difficult when we take another directrix curves. Hence, now we define a new surface type using
the parametrization (22) of an embankment surface. Here, we take an arbitrary function Ω(u,v)
instead of Γe3(u,v) in (22) and call it embankmentlike surface.
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So, we can give the following definition.

Definition 2. Let α : I ⊆R→ E3 be a regular space curve with non-zero curvature. Then, the
surface Γel(u,v)= (Γel1(u,v),Γel2(u,v),Γel3(u,v)) which can be given by

Γel(u,v)=α(u)− (m2 +1)
‖α′(u)‖ Ψ(u,v)Ψ(u,v)u.T(u)

∓
√

m2 +1Ψ(u,v)

√
1− (m2 +1)

‖α′(u)‖2Ψ(u,v)2
u.{cosv.N(u)+sinv.B(u)} (28)

is called an embankmentlike surface, where Ψ(u,v) = Ω(u,v) −α3(u), m ∈ R, m > 0 with
|mα̇3| <

√
α̇2

1 + α̇2
2 and Ω(u,v) is an arbitrary function according to u and v.

Corollary 1. Let α : I ⊆ R→ E3 be a unit speed directrix curve with non-zero curvature of
embankmentlike surface Γel and q(u,v) = cosv+ sinv.T(u) be a unit quaternion in S3 ⊂ R4.
Then, the embankmentlike surface Γel can be written by

Γel(u,v)=α(u)− (m2 +1)Ψ(u,v)Ψ(u,v)u.T(u)

∓
√

m2 +1Ψ(u,v)
√

1− (m2 +1)Ψ(u,v)2
u.q(u,v)×N(u), (29)

where Ψ(u,v)=Ω(u,v)−α3(u), m ∈R, m > 0 with |mα̇3| <
√
α̇2

1 + α̇2
2 and Ω(u,v) is an arbitrary

function according to u and v.

4.1 Visualization for Embankmentlike Surfaces in E3

In this subsection, we give some visualizations for embankmentlike surfaces in Euclidean 3-
space. For this, we create some examples for embankmentlike surfaces with the aid of different
directrix and draw these directrix and surfaces.

Also, after computing Gaussian and mean curvatures in each regular point of a surface
given by parametric equations, these functions enable us to plot the graphs of the Gaussian and
mean curvatures of regular surfaces and to paint surfaces with colours which depend on these
curvatures [9].

So, we find the Gaussian and mean curvatures of these surfaces and draw the Gaussian and
mean curvature functions’ graphics. Furthermore, we draw graphics which show the variations
of Gaussian and mean curvatures on related surfaces with the aid of Mathematica. For the
following visualizations we use the Mathematica colour function “TemperatureMap” with values
on a colour-spectrum.

Example 2. Let us take directrix as

α(u)= (cos(u),sin(u),0), (30)

which is a circle in E3 and let us suppose that Ω(u,v)= 1−v, v 6= 1 and m =p
3.

Now, let us obtain the embankmentlike surface (28). Using (30) in (28), we can obtain the
embankmentlike surface as

Γel(u,v)= (cos(u)−2(1−v)cos(u)cos(v),sin(u)−2(1−v)sin(u)cos(v),2(1−v)sin(v)). (31)

In Figure 3, one can see the directrix (30) and embankmentlike surface (31).
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Figure 3. The directrix (30) and embankmentlike surface (31)

Furthermore, we obtain the Gaussian and mean curvatures of embankmentlike surface (31) as

K = (v2 −2v+3)((−1+v)cos(v)+sin(v))
2(v2 −2v+2)2(1+2(−1+v)cos(v))

and

H = v2 −2v+3+2(2v3 −6v2 +9v−5)cos(v)+2(v2 −2v+2)sin(v)

4(v2 −2v+2)
√

(v2 −2v+2)(1+2(−1+v)cos(v))2
,

respectively. In Figure4, one can see the Gaussian and mean curvatures functions’ graphics
above and the variations of Gaussian and mean curvatures on embankmentlike surface (31)
below.

Figure 4. Gaussian and mean curvatures functions’ graphics and the variations of Gaussian and mean
curvatures on embankmentlike surface (31)

In the following examples, we use the same procedure as Example 2 and don’t go into more
details.
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Example 3. Let us take directrix as

α(u)= (2cos(u),2sin(u),u), (32)

which is a helix in E3 and let us suppose that Ω(u,v) = u+ v and m = 1. Then, we obtain the
embankmentlike surface (28) under these assumptions as

Γel(u,v)= (2cos(u)−
p

2vcos(u)cos(v)+
√

2
5

vsin(u)sin(v),

2sin(u)−
p

2vsin(u)cos(v)−
√

2
5

vcos(u)sin(v),u+ 2
p

2p
5

vsin(v)). (33)

The directrix (32) and embankmentlike surface (33) can be seen in Figure 5.

Figure 5. The directrix (32) and embankmentlike surface (33)

In Figure 6 one can see the Gaussian and mean curvatures functions’ graphics above and
the variations of Gaussian and mean curvatures on embankmentlike surface (33) below.

Figure 6. Gaussian and mean curvatures functions’ graphics and the variations of Gaussian and mean
curvatures on embankmentlike surface (33)
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Example 4. Let us take directrix as

α(u)=
(
1+cos(u),sin(u),2sin

(u
2

))
, (34)

which is Viviani curve in E3 and let us suppose that Ω(u,v)= 2
(
sin

(u
2

)+cos
( v

2

))
and m = 0,5.

Here, one can easily calculate Frenet-Serret apparatus of Viviani curve as

T(u)= 1p
3+cos(u)

(
−p2sin(u),

p
2cos(u),

p
2cos

(u
2

))
N(u)= 1

2
p

3+cos(u)
p

13+3cos(u)

(
−(3+12cos(u)+cos(2u)),−2(6+cos(u))sin(u),−4sin

(u
2

))
B(u)= 1p

26+6cos(u)

(
3sin

(u
2

)
+sin

(
3u
2

)
,−4cos

(u
2

)3
,4

)

κ=
p

13+3cos(u)

(3+cos(u))
3
2

,

τ= 6cos( u
2 )

13+3cos(u)
.


(35)

Thus the embankmentlike surface (28) under these assumptions is obtained as

Γel(u,v)=
(
1+cos(u)+λ1N1(u)+µ1B1(u),sinu+λ1N2(u)+µ1B2(u),

2sin
(u

2

)
+λ1N3(u)+µ1B3(u)

)
, (36)

where λ1 = p
5cos(v)cos( v

2 ), µ1 = p
5sin(v)cos( v

2 ), respectively. In Figure 7, one can see the
directrix (34) and embankmentlike surface (36).

Figure 7. The directrix (34) and embankmentlike surface (36)

In Figure 8 one can see the Gaussian and mean curvatures functions’ graphics above and
the variations of Gaussian and mean curvatures on embankmentlike surface (36) below.
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Figure 8. Gaussian and mean curvatures functions’ graphics and the variations of Gaussian and mean
curvatures on embankmentlike surface (36)

5. Tubembankmentlike Surfaces in E3

In this section, we define tubembankmentlike surfaces and by obtaining the Gaussian, mean and
second Gaussian curvatures of tubembankmentlike surfaces, we give some characterizations
about Weingarten tubembankmentlike surfaces. Also, we create some visualizations for
tubembankentlike surfaces according to different directrix.

Definition 3. Let Γel be the embankmentlike surface parametrized by (28). If Ψ(u,v) =
c =constant on Γel , then we’ll call thattubembankmentlike surface.

So, we can give the following Corollary from the definition of tubembankmentlike surface
and (28):

Corollary 2. Let α : I ⊆ R→ E3 be a regular space curve with non-zero curvature. Then, the
parametrization of a tubembankmentlike surface Γtel(u,v)= (Γtel1(u,v),Γtel2(u,v),Γtel3(u,v)) can
be given by

Γtel(u,v)=α(u)∓ c1{cosv.N(u)+sinv.B(u)}, (37)

where c1 =
p

m2 +1.c, m ∈R, m > 0 with |mα̇3| <
√
α̇2

1 + α̇2
2.

Now, we’ll give a characterization for tubembankmentlike surfaces using quaternionic
approach.
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Corollary 3. Let α : I ⊆ R→ E3 be a unit speed directrix curve with non-zero curvature of
tubembankmentlike surface Γtel and q(u,v)= cosv+sinv.T(u) be a unit quaternion in S3 ⊂R4.
Then, the tubembankmentlike surface Γtel can be given by

Γtel(u,v)=α(u)∓ c1.q(u,v)×N(u).

The components of the first and second fundamental forms of tubembankmentlike surface
(37) are obtained by

g11 = (1± c1κcosv)2 + c2
1τ

2, g12 = c2
1τ, g22 = c2

1

and

L11 =±(1± c1κcosv)κcosv+ c1τ
2, L12 = c1τ, L22 = c1,

respectively. So, from (4), (5) and (6), we obtain the Gaussian, mean and second Gaussian
curvatures of tubembankmentlike surface Γtel as

K = ±κcosv
(1± c1κcosv).c1

, (38)

H = 1±2c1κcosv
2(1± c1κcosv).c1

(39)

and

K I I =
1+cos2 v(1±6c1κcosv+4c2

1κ
2 cos2 v)

4c1(1± c1κcosv)2.cos2 v
, (40)

respectively.

Hence we have,

Theorem 3. If α : I ⊆ R → E3 is a regular space curve with non-zero curvature, then the
tubembankmentlike surface Γtel , with directrix α and non-degenerate second fundamental
form, is a (H,K)-Weingarten surface.

Proof. From (38) and (39), we have

Ku = ±κ′ cosv
(1± c1κcosv)2.c1

, Kv = ∓κsinv
(1± c1κcosv)2.c1

(41)

and

Hu = ±κ′ cosv
2(1± c1κcosv)2 , Hv = ∓κsinv

2(1± c1κcosv)2 . (42)

Thus, from (41) and (42), we get Φ(H,K)= HuKv −HvKu = 0. So, the proof completes.

We know that, a surface is said that linear Weingarten surface, if it satisfies aH+bK = c,
where a,b, c are constants [17]. Thus;

Corollary 4. If α : I ⊆ R → E3 is a regular space curve with non-zero curvature, then the
tubembankmentlike surface Γtel , with directrix α and non-degenerate second fundamental form,
is a linear Weingarten surface.

Proof. From (38) and (39), we have 2H− c1K = 1
c1

, which completes the proof.
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Theorem 4. Let α : I ⊆ R → E3 be a regular space curve with non-zero curvature. If the
tubembankmentlike surface Γtel , with directrix α and non-degenerate second fundamental
form, is a (H,K I I ) or (K ,K I I )-Weingarten surface, then the curvature of α is a non-zero constant.

Proof. Taking derivatives of (40) with respect to u and v, we have

K I Iu =
±2κ′ cos2 v+ c1κκ

′ cos3 v∓κ′
2(1± c1κcosv)3.cosv

and (43)

K I Iv =
∓2c1κsinvcos3 v±2c1κsinvcosv− c2

1κ
2 sinvcos4 v−sinv

2c1(1± c1κcosv)3.cos3 v
(44)

respectively. If Γtel is a (H,K I I) or (K ,K I I)-Weingarten surface, then from (41)-(44) and the
definitions of (H,K I I) or (K ,K I I)-Weingarten surface, we get κ′ sinv = 0 and this completes the
proof.

5.1 Visualization for Tubembankmentlike Surfaces in E3

Finally, let us give some visualizations for tubembankmentlike surfaces:

Example 5. Let us take directrix as helix (32) and let us suppose that Ω(u,v) = u + d1,
d1 =constant and m = 1. Then, we obtain the tubembankmentlike surface (37) under these
assumptions as

Γtel(u,v)=
(
2cos(u)−4

p
2cos(u)cos(v)+4.

√
2
5 sin(u)sin(v),

2sin(u)−4
p

2sin(u)cos(v)−4.
√

2
5 cos(u)sin(v),u+8.

√
2
5 sin(v)

)
, (45)

where we take d1 =4. In Figure 9, one can see the directrix (32) and tubembankmentlike
surface (45).

Figure 9. The directrix (32) and tubembankmentlike surface (45)

From (38), (39) and (40), we obtain the Gaussian, mean and second Gaussian curvatures of
tubembankmentlike surface (45) as

K = −cosv
10

p
2−32cosv

,
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H = 5−16
p

2cosv
40

p
2−128cosv

and

K I I =
1+cos2 v

(
1− 48

p
2

5 cosv+ 512
25 cos2 v

)
16

p
2

(
1− 8

p
2

5 cosv
)2

cos2 v
,

respectively. In Figure 10, one can see the Gaussian, mean and second Gaussian curvatures
functions’ graphics above and the variations of Gaussian, mean and second Gaussian curvatures
on tubembankmentlike surface (45) below.

Figure 10. Gaussian, mean and second Gaussian curvatures functions’ graphics and the variations of
Gaussian, mean and second Gaussian curvatures on tubembankmentlike surface (45)

Example 6. Let us take directrix as Viviani curve (34) and let us suppose that Ω(u,v) =
2sin( u

2 )+d2, d2 =constant and m = 0,5. Then, we obtain the tubembankmentlike surfaces (37)
under these assumptions as

Γtel(u,v)=
(
1+cos(u)+ 3

4
p

5
cos(v)N1(u)+ 3

4
p

5
sin(v)B1(u),

sinu+ 3

4
p

5
cos(v)N2(u)+ 3

4
p

5
sin(v)B2(u),

2sin
(u

2

)
+ 3

4
p

5
cos(v)N3(u)+ 3

4
p

5
sin(v)B3(u)

)
, (46)

where we take d2 = 0,3. In Figure 11, one can see the directrix (34) and tubembankmentlike
surface (46).

From (38), (39) and (40), we obtain the Gaussian, mean and second Gaussian curvatures of
tubembankmentlike surface (46) as
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Figure 11. The directrix (34) and tubembankmentlike surface (46)

K = −80
p

5.
p

13+3cosu.cosv

60.(3+cosu)
3
2 −9

p
5.
p

13+3cosu.cosv
, H = 40

p
5.(3+cosu)

3
2 −60.

p
13+3cosu.cosv

60.(3+cosu)
3
2 −9

p
5.
p

13+3cosu.cosv
and

K I I =
1+cos2 v

(
1− 9

2
p

5

p
13+3cosu

(3+cosu)
3
2

cosv+ 9
20

13+3cosu
(3+cosu)3 cos2 v

)
3p
5

(
1− 3

4
p

5

p
13+3cosu

(3+cosu)
3
2

cosv
)2

cos2 v
,

respectively. In Figure 12, one can see the Gaussian, mean and second Gaussian curvatures
functions’ graphics above and the variations of Gaussian, mean and second Gaussian curvatures
on tubembankmentlike surface (46) below.

Figure 12. Gaussian, mean and second Gaussian curvatures functions’ graphics and the variations of
Gaussian, mean and second Gaussian curvatures on tubembankmentlike surface (46)
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Example 7. Let us take directrix as

α(u)= (eu,u+3,2u), (47)

which is an arbitrary curve in E3 and let us suppose that Ω(u,v)= 2u+d3, d3 =constant and
m = 0,1. Here, one can easily calculate Frenet-Serret apparatus of the curve (47) as

T(u)= 1p
e2u +5

(eu,1,2)

N(u)= 1p
e2u +5

(p
5,− eu

p
5

,−2eu
p

5

)
B(u)= 1p

5
(0,2,−1)

κ=
p

5eu

(5+ e2u)
3
2

, τ= 0.


. (48)

Then, we obtain the tubembankmentlike surfaces (37) under these assumptions as

Γ(u,v)=
(
eu + 3

p
5,05p

e2u +5
cos(v),u+3− 3

p
1,01p

5
p

e2u +5
eu cos(v)+ 6

p
1,01p
5

sin(v),

2u− 6
p

1,01p
5
p

e2u +5
eu cos(v)− 3

p
1,01p
5

sin(v)
)
, (49)

where we take d3 = 3. In Figure 13, one can see the directrix (47) and tubembankmentlike
surface (49).

Figure 13. The directrix (47) and tubembankmentlike surface (49)

From (38), (39) and (40), we obtain the Gaussian, mean and second Gaussian curvatures of
tubembankmentlike surface (49) as

K =−
p

5eu cosv

3
p

1,01(5+ e2u)
3
2 − (9,09)

p
5eu cosv

, H = (5+ e2u)
3
2 −6

p
5,05eu cosv

6
p

1,01((5+ e2u)
3
2 −3

p
5,05eu cosv)

and

K I I =
1+cos2 v

(
1−18

p
5,05 eu

(e2u+5)
3
2

cosv+ (181,8) e2u

(e2u+5)3 cos2 v
)

12
p

1,01
(
1−3

p
5,05 eu

(e2u+5)
3
2

cosv
)2

cos2 v
,
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respectively. In Figure 14, one can see the Gaussian, mean and second Gaussian curvatures
functions’ graphics above and the variations of Gaussian, mean and second Gaussian curvatures
on tubembankmentlike surface (49) below.

Figure 14. Gaussian, mean and second Gaussian curvatures functions’ graphics and the variations of
Gaussian, mean and second Gaussian curvatures on tubembankmentlike surface (49)

Remark 1. In the calculations of above examples, we’ve taken the "∓" which are in (22), (28)
and (37) as "+". Similarly, one can make these calculations by taking "∓" as "−".

6. Conclusion and Future Work
We think that, embankment, embankmentlike and tubembankmentlike surfaces which are
stated in the present paper will bring a new viewpoint to geometers and we hope, these
surfaces will be useful for future structural engineers. Furthermore, in the future works we
can investigate these surfaces in Minkowski 3-space, Galilean 3-space, pseudo Galilean 3-space
and etc.
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