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Abstract. Molodtsov pioneered the concept of soft sets, offering a method to classify elements
of a universe based on a specified set of parameters. This approach serves to model vagueness
and uncertainty. Semigraphs are a generalised form of graphs introduced by Sampathkumar et
al. (Semigraphs and Their Applications, Academy of Discrete Mathematics and Applications, Mysore,
India, 337 pages (2019)). Integrating soft set theory into semigraphs led to the creation of soft
semigraphs. Due to its adeptness in handling parameterisation, the field of soft semigraph theory is
rapidly evolving. In this study, we introduce the concept of soft semitrees and explore some of their
characteristics.
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1. Introduction
Traditional methods in formal modelling, reasoning, and computation are generally
deterministic, clear, and precise. However, fields such as engineering, medicine, economics,
and social sciences often deal with data that is not clearly defined. This introduces various
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uncertainties that challenge conventional methods. The fuzzy set theory addresses one type
of uncertainty, known as “Fuzziness”, which occurs when elements partially belong to a set.
Although it effectively manages uncertainties related to vagueness or partial membership, it
does not cover all uncertainties in real-world problems. In 1999, Molodtsov [9] introduced soft set
theory, which offers a more practical approach than established theories like probability or fuzzy
set theory due to its versatility. For instance, fuzzy set theory lacks adequate parameterization
tools. Researchers like Maji et al. [7,8] and Saleh et al. [11,12] have expanded on soft set theory
to solve decision-making problems.

Thumbakara and George [17] introduced the concept of soft graphs. Akram and Nawas [1,3]
modified the definition of soft graphs, and they made further advancements by introducing
fuzzy soft graphs, strong fuzzy soft graphs, complete fuzzy soft graphs, and regular fuzzy
soft graphs, exploring their properties and potential applications (see [2] and references cited
therein). Akram and Zafar [5] pioneered the concepts of soft trees and fuzzy soft trees. The
fuzzy soft theory combines the characteristics of fuzzy sets and soft sets to handle problems
with uncertain data. Nawaz and Akram [10] explored the applications of fuzzy soft graphs
in analyzing oligopolistic competition among wireless internet service providers in Malaysia.
Additionally, Akram and Shahzadi [4] proposed a decision-making approach using Pythagorean
Dombi fuzzy soft graphs.

Thenge et al. [14–16] have contributed to the study of soft graphs, a growing field in graph
theory due to their utility in handling parameterization. George et al. [6] have studied various
concepts in soft graphs and introduced soft hypergraphs, soft directed graphs, soft directed
hypergraphs, and soft disemigraphs, examining their properties. They extended the idea of
graph products to soft graphs and explored various product operations in soft graphs and
soft directed graphs. Sampathkumar et al. [13] introduced semigraphs, a broader version of
graphs, where the order of vertices within edges is maintained. When represented on a plane,
semigraphs resemble conventional graphs. In 2023, George et al. [6] introduced soft semigraphs
by applying soft set principles to semigraphs and defined several soft semigraph operations. They
also introduced product operations, connectedness, and various degrees, graphs, and matrices
associated with soft semigraphs. Furthermore, they presented Eulerian and Hamiltonian soft
semigraphs, the closure of a soft semigraph and various kinds of isomorphisms among soft
semigraphs, including s-isomorphism, sev-isomorphism, se-isomorphism, and sa-isomorphism.
In this paper, we introduce the concept of soft semitrees and explore some of their characteristics.

2. Preliminaries
In this section, we lay the foundation for comprehending soft sets, semigraphs, and soft
semigraphs. We define fundamental concepts such as partial edges and p-part, which are
crucial to the structure of soft semigraphs. Finally, we provide a brief overview of topics,
including connectedness in soft semigraphs and bipartite soft semigraphs.
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2.1 Semigraph
The notion of a semigraph was introduced by Sampathkumar et al. [13] as follows. A semigraph
G is a pair (V , X ) where V is a nonempty set whose elements are called vertices of G, and X is
a set of n-tuples, called edges of G, of distinct vertices, for various n ≥ 2, satisfying the following
conditions:

(1) Any two edges have at most one vertex in common.

(2) Two edges (v1,v2, . . . ,un) and (v1,v2, . . . ,vm) are considered to be equal if and only if

(a) m = n, and
(b) either ui = vi for 1≤ i ≤ n, or ui = vn−i+1 for 1≤ i ≤ n.

Let G = (V , X ) be a semigraph and E = (v1,v2, . . . ,vn) be an edge of G. Then, v1 and vn are the
end vertices of E and vi, 2≤ i ≤ n−1 are the middle vertices(or m-vertices) of E. If a vertex v of
a semigraph G appears only as an end vertex, then it is called an end vertex. If a vertex v is
only a middle vertex then it is a middle vertex or m-vertex while a vertex v is called middle-
cum-end vertex or (m, e)-vertex if it is a middle vertex of some edge and an end vertex of some
other edge. A subedge of an edge E = (v1,v2, . . . ,vn) is a k-tuple E′ = (vi1 ,vi2 , . . . ,vik ), where
1 ≤ i1 < i2 < ·· · < ik ≤ n or 1 ≤ ik < ik−1 < ·· · < i1 ≤ n. We say that the subedge E′ is induced
by the set of vertices {vi1 ,vi2 , . . . ,vik }. A partial edge of E = (v1,v2, . . . ,vn) is a ( j− i+1)-tuple
E(vi,v j)= (vi,vi+1, . . . ,v j), where 1≤ i < j ≤ n. G′ = (V ′, X ′) is a partial semigraph of a semigraph
G if the edges of G′ are partial edges of G. Two vertices u and v in a semigraph G are said to be
adjacent if they belong to the same edge. If u and v are adjacent and consecutive in order, then
they are said to be consecutively adjacent. u and v are said to be e-adjacent if they are the end
vertices of an edge and 1e-adjacent if both the vertices u and v belong to the same edge and at
least one of them is an end vertex of that edge.

Theorem 2.1 ([13]). Let G be a semigraph with p vertices and q edges E i, 1 ≤ i ≤ q and k

p-parts. Then, G contains no cycles if and only if p+ q =
q∑

i=1
|E i|+k.

2.2 Soft Set
In 1999, Molodtsov [9] initiated the concept of soft sets. Let U be an initial universe set and let
A be a set of parameters. A pair (F, A) is called a soft set (over U) if and only if F is a mapping
of A into the set of all subsets of the set U . That is, F : A →P(U).

2.3 Soft Semigraph
George et al. [6] introduced soft semigraph by applying the concept of soft set in semigraph
as follows: Let G∗ = (V , X ) be a semigraph having vertex set V and edge set X . Consider a
subset V1 of V . Then a partial edge formed by some or all vertices of V1 is said to be a maximum
partial edge or mp edge if it is not a partial edge of any other partial edge formed by some or
all vertices of V1. Let X p be the collection of all partial edges of the semigraph G and A be
a nonempty set. Let a subset R of A ×V be an arbitrary relation from A to V . We define a
mapping Q from A to P(V ) by Q(x)= {y ∈V | xR y}, ∀ x ∈ A, where P(V ) denotes the power set
of V . Then the pair (Q, A) is a soft set over V . Also, define a mapping W from A to P(X p) by
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W(x) = {mp edges〈Q(x)〉}, where {mp edges〈Q(x)〉} denotes the set of all mp edges that can be
formed by some or all vertices of Q(x) and P(X p) denotes the power set of X p. The pair (W , A) is
a soft set over X p. Then, we can define a soft semigraph as follows:

The 4-tuple G = (G∗,Q,W , A) is called a soft semigraph of G∗ if the following conditions are
satisfied:

(1) G∗ = (V , X ) is a semigraph having vertex set V and edge set X ,

(2) A is the nonempty set of parameters,

(3) (Q, A) is a soft set over V ,

(4) (W , A) is a soft set over X p,

(5) H(a)= (Q(a),W(a)) is a partial semigraph of G∗, ∀ a ∈ A.
Let G∗ = (V , X ) be a semigraph and G = (G∗,Q,W , A) be a soft semigraph of G∗ which is also
given by {H(x) : x ∈ A}. Then, the partial semigraph H(x) corresponding to any parameter x in
A is called a p-part of the soft semigraph G. An edge present in a soft semigraph G of G∗ is
called an f -edge. It may be a partial edge of some edge in G∗ or an edge in G∗. A partial edge
of any f -edge of a soft semigraph G is called a p-edge of G. An f -edge is a p-edge of itself. An
f -edge or a p-edge of a soft semigraph G is called an fp-edge of G. Let H(x) be any p-part of the
soft semigraph G, and let v be any vertex in H(x). Then, the p-part degree of v in H(x) denoted
by degv[H(x)], is defined as the number of f -edges having v as an end vertex in H(x). Degree of
a vertex v in a soft semigraph G, denoted by degv is defined as degvmax{degv[H(x)] : x ∈ A},
where degv[H(x)] denotes the p-part degree of v in H(x).

2.4 Connectedness in Soft Semigraph
George et al. introduced the concept of connectedness in soft semigraph as follows: A soft walk
or an s-walk in a soft semigraph G is an alternating sequence v0E1v2E2 . . .vn−1Envn of vertices
and fp-edges, beginning with the vertex v0 and ending with the vertex vn such that vi−1 and
vi are the end vertices or partial end vertices of the fp-edge E i,1≤ i ≤ n. This s-walk is called
a v0 − vn s-walk. Here, v0 is called the origin and vn is called the terminus of the s-walk. A
v0 − vn s-walk is closed if v0 = vn. Otherwise, it is called open. Also, we can denote a v0 − vn

s-walk by writing the vertices of the fp-edge E i instead of E i. In other words, an s-walk can
be represented by a sequence of vertices like v0v1v2v3 . . .vn−1vn in which the vertices vi and
vi−1 are consecutively adjacent. An s-walk is called trivial if it has no fp-edges. An s-walk
v0E1v2E2 . . .vn−1Envn is called a soft trail or an s-trail, if the fp-edges E1,E2, . . . ,En are such
that E i ̸= E j or E i is not a partial edge of E j, ∀ i, j = 1,2, . . . ,n. In an s-trail, vertices may be
repeated. Also, note that the fp-edges in the form (v1,v2, . . . ,vn−1,vn) and (vn,vn−1, . . . ,v2,v1) are
the same. Suppose E = (v1,v2, . . . ,vi,vi+1, . . .vr,vr+1,vn−1,vn) is an f -edge of the soft semigraph
G. Then, we treat (vi,vi+1, . . . ,vr,vr+1) and (vr+1,vr, . . . ,vi+1,vi) as the same partial edge of E.
Keep this in mind while verifying the conditions for an s-trail. For example, if E = (v1,v3,v4,v5)
is an f -edge of G, then E1 = (v3,v4,v5) and E2 = (v4,v3) are partial edges of E. Also, E2 is a
partial edge of E1. A v0−vn soft path or a v0−vn s-path is a v0−vn s-trail, in which all the vertices
are distinct. A s-path will also be an s-trail. A non-trivial closed s-trail v0E1v2E2 . . .vn−1Env0

is called a soft cycle or an s-cycle if its origin v0 and internal vertices are distinct. That is, the
closed s-trail T = v0E1v2E2 . . .vn−1Env0 is an s-cycle if, T contains at least three fp-edges (by
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the definition of semigraph) and the vertices v0,v1,v2, · · · ,vn−1 are distinct. Two vertices u and v
are soft connected or s-connected in G, if there is an s-path between u and v in at least one of the
p-parts H(x) of G. A p-part H(x) of G for some x ∈ A is said to be s-connected if every two of its
vertices are s-connected. That is, the p-part H(x) is s-connected if for every two vertices in Q(x),
there is an s-path between them in that p-part. A soft semigraph G is said to be soft connected
or s-connected if every two of its vertices are s-connected. That is, for every two vertices in
∪x∈AQ(x), there is an s-path between them in at least one p-part H(x) of G. An fp-edge E in
H(x) is said to be a p-part bridge or a p-part cut edge of H(x) if ω[H(x)−E] >ω[H(x)] and E
must be such minimum fp-edge. The term “minimum fp-edge” in the definition indicates that a
partial edge E′ of E cannot satisfy the condition ω[H(x)−E]>ω[H(x)] in H(x). An fp-edge E in
G is said to be a p-part bridge or a p-part cut edge of G, if E is a p-part bridge or a p-part cut
edge of at least one of the p-parts H(x).

Theorem 2.2. Let u and v be any two consecutively adjacent vertices of a p-part H(x) of a soft
semigraph G. Then, the fp-edge E = (u,v) of H(x) is a p-part bridge if and only if E is not part of
any s-cycle in that H(x).

2.5 Bipartite Soft Semigraph
Let G∗ = (V , X ) be a semigraph and G = (G∗,Q,W , A) be a soft semigraph of G∗ represented
by {H(x) : x ∈ A}. Then, G is called a bipartite soft semigraph if each of its p-parts H(x) is a
bipartite partial semigraph of G∗. That is, Q(x) can be partitioned into sets {Q1(x),Q2(x)} such
that both Q1(x) and Q2(x) are independent for all x in A. That is, no f -edge in W(x) is an mp
edge〈Q1(x)〉 or an mp edge〈Q2(x)〉, for all x in A. The term mp edge〈Q i(x)〉 denotes a maximum
partial edge that can be formed by some or all vertices of Q i(x). The soft semigraph G is called
an e-bipartite soft semigraph if each of its p-parts H(x) is an e-bipartite partial semigraph of
G∗. That is, Q(x) can be partitioned into sets {Q1(x),Q2(x)} such that both Q1(x) and Q2(x) are
e-independent for all x in A. That is, no two end vertices or partial end vertices of an f -edge
in W(x) belong to Q1(x) or Q2(x), for all x in A. G is called a strongly bipartite soft semigraph
if each of its p-parts H(x) is a strongly bipartite partial semigraph of G∗. That is, Q(x) can be
partitioned into sets {Q1(x),Q2(x)} such that both Q1(x) and Q2(x) are strongly independent for
all x in A. That is, no two adjacent vertices in H(x) belong to Q1(x) or Q2(x), for all x in A.

3. Soft Semitree
Definition 3.1. Let G = (G∗,Q,W , A) be a soft semigraph given by {H(x) : x ∈ A}. The p-part
H(x) of G is called a semitree p-part if it is connected and contains no s-cycles.

Definition 3.2. A soft semigraph G = (G∗,Q,W , A) given by {H(x) : x ∈ A} is called a soft
semitree if all of its p-parts are semitree p-parts, i.e., every two vertices in H(x) are connected
by an s-path and contains no s-cycles, ∀x ∈ A.

Example 3.1. Let G∗ = (V , X ) be a semigraph given in Figure 1, where V = {v1,v2,v3,v4,v5,v6,
v7,v8,v9,v10,v11,v12,v13,v14} and X = {(v1,v2,v3), (v2,v5,v6,v8), (v1,v4,v7), (v12,v13,v14), (v4,v9),
(v5,v13), (v9,v10,v11)}.
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Figure 1. Semigraph G∗ = (V , X )

Let A = {v2,v4} ⊆ V be a parameter set. Define Q from A to P(V ) by Q(x) = {y ∈ V |
xR y ⇔ x = y or x and y are adjacent}, ∀ x ∈ A and W from A to P(X p) by W(x) = {mp-
edges〈Q(x)〉}, ∀ x ∈ A. That is, Q(v2) = {v1,v2,v3,v5,v6,v8} and Q(v4) = {v1,v4,v7,v9}. Also,
W(v2) = {(v1,v2,v3), (v2,v5,v6,v8)} and W(v4) = {(v1,v4,v7), (v4,v9)}. Here H(v2) = (Q(v2),W(v2))
and H(v4) = (Q(v4),W(v4)) are partial semigraphs of G∗ as shown below in Figure 2. Hence
G = {H(v2),H(v4)} is a soft semigraph of G∗.

Figure 2. Soft semigraph G = {H(v2),H(v4)}

Here, G has two p-parts H(v2) and H(v4) and both are semitree p-parts. Hence, G is a soft
semitree.

Theorem 3.1. Every semitree G∗ = (V , X ) is a soft semitree of itself.

Proof. Let G∗ = (V , X ) be a semitree. Then G∗ will be a connected and acyclic semigraph.
Let them v be any vertex in G∗. Take a parameter set A = {v} ⊆ V . Define Q : A → P(V ) by
Q(x) = {y ∈ V | xR y ⇔ x and y are connected}, for all x in A. Then, (Q, A) is a soft set over
V . Here, Q(v) is the set of all vertices in G∗ since G∗ is a connected semigraph. Also, define
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W : A →P(X p) by W(x)= {mp edges〈Q(x)〉}, for all x in A. That is, W(v) contains all edges in the
semigraph G∗. Clearly, (W , A) is a soft set over X p. If we consider H(v) = (Q(v),W(v)), it will
be a partial semigraph of G∗ since H(v) is G∗ itself, and a semigraph is a partial semigraph
of itself. Also, G is a soft semitree since its only p-part is G∗, and it is a semitree. That is, the
soft semitree G = (G∗,Q,W , A), which is also represented by {H(v)} will be the semitree G∗

itself.

Example 3.2. Let G∗ = (V , X ) be a semitree given in Figure 3 having vertex set V =
{v1,v2,v3,v4,v5,v6,v7} and edge set X = {(v2,v4,v5), (v5,v6,v7), (v1,v2), (v3,v4)}.

Figure 3. Semitree G∗ = (V , X )

Let the parameter set be A = {v1}⊆V . Define Q : A →P(V ) by Q(x)= {y ∈V | xR y⇔ x and y
are connected in G∗}, for all x in A and W : A →P(X p) by W(x)= {mp edges〈Q(x)〉}, for all x in
A. That is, Q(v1) = {v1,v2,v3,v4,v5,v6,v7}. Also, W(v1) = {(v2,v4,v5), (v5,v6,v7), (v1,v2), (v3,v4)}.
Then, (Q, A) and (W , A) are soft sets over V and X p respectively. Also, H(v1)= (Q(v1),W(v1)) is
a partial semigraphs of G∗ as shown in Figure 4. Hence, G = {H(v1)} is a soft semitree of G∗.

Figure 4. Soft semitree G = {H(v1)}

Here, we can see that the soft semitree G = (G∗,Q,W , A), which is also represented by
G = {H(v1)} is exactly same as the semitree G∗ = (V , X ).
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Remark 3.1. If G is a soft semitree of G∗, then G∗ need not be a semitree. This is clear from
the following example.

Example 3.3. Let G∗ = (V , X ) be a semigraph given in Figure 5, where V = {v1,v2,v3,v4,
v5,v6,v7} and X = {(v1,v2,v3,v4), (v1,v5,v6,v7), (v3,v6)}.

Figure 5. Semigraph G∗ = (V , X )

Let A = {v3,v5}⊆V be a parameter set. Define Q from A to P(V ) by Q(x)= {y ∈V | xR y⇔ x =
y or x and y are adjacent}, ∀ x ∈ A and W from A to P(X p) by W(x)= {mp-edges〈Q(x)〉}, ∀ x ∈ A.
That is, Q(v3)= {v1,v2,v3,v4,v6} and Q(v5)= {v1,v5,v6,v7}. Also, W(v3)= {(v1,v2,v3,v4), (v3,v6)}
and W(v5) = {(v1,v5,v6,v7)}. Here H(v3) = (Q(v3),W(v3)) and H(v5) = (Q(v5),W(v5)) are partial
semigraphs of G∗ as shown below in Figure 6. Hence G = {H(v3),H(v5)} is a soft semigraph of
G∗.

Figure 6. Soft semitree G = {H(v3),H(v5)}

Here, G has two p-parts H(v3) and H(v5) and both are semitree p-parts. Hence G =
{H(v3),H(v5)} is a soft semitree of G∗. But the semigraph G∗ is not a semitree since it is
not acyclic.

Theorem 3.2. If u and v are any two vertices of a semitree p-part of a soft semigraph G, then
there is precisely one s-path from u to v in that p-part.
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Proof. Let H(x) = (Q(x),W(x)) a semitree p-part of a soft semigraph G = (G∗,Q,W , A).
Then we assume the contrary. That is, we assume that there are two different
s- paths from u to v, say P1 = uE1v1E2v2 . . .un−1Env and P2 = uF1v1F2 . . .vm−1Fmv,
where u,v1,v2 . . .un−1,v,v1,v2, . . . ,vm−1 are vertices of Q(x) given in some order and
E1,E2, . . . ,En,F1,F2, . . . ,Fm are fp-edges present in H(x). Express the two paths by writing
the vertices of the fp-edges E i and F j instead of them, for i = 1,2, . . . ,n, j = 1,2, . . . ,m. Also,
suppose that E i ’s and F j ’s are different fp-edges. Let t be the first common vertex of two s-paths
after the common vertex u. There exists at least one such vertex since v is common to both P1

and P2. We have t = ui = v j for some i and j, then combining the u−ui portion of the s-path P1

and v j −u portion of the s-path P2 (both are s-paths) we get an s-cycle. Also, if some fp-edges
at the beginning of P1 and P2 are the same, then take the last common vertex w of P1 and P2

after such common fp-edges. Suppose that w = ui = vk. Then find the next common vertex of P1

and P2 immediately after w. Such a vertex exists since v is common to both s-paths. Suppose
r = uy = vz, then combining one ui −uy portion of the s-path P1, vz − vk portion of the s-path
P2 (both are s-paths) we get an s-cycle. This is not possible since H(x) is a p-part semitree.
Therefore, our assumption was wrong. That is, there is precisely one s-path in H(x) from u
to v.

Theorem 3.3. Let G be a soft semitree with at least two vertices in each p-part. Then G has at
least 2.w(G) number of vertices having degree one, if we count a vertex as many times, it appears
in different p-parts with degree one.

Proof. Let G = (G∗,Q,W , A) be a soft semigraph of G∗, which is a soft semitree, and is given by
{H(x) : x ∈ A}. Take a p-part H(x) of G, which is a semitree p-part. Consider the longest s-path
P = v0E1v1E2 . . .vn−1Envn in H(x). Suppose that degv0[H(x)] > 1. The fp-edge E1 = v0E1v1

contributes one to the degree of v0 in H(x). Therefore, there must be another fp-edge from v0

to a vertex u, which is different from the fp-edge E1. If this vertex or any vertex present in
the fp-edge E is the same as any one of the vertex ui in the s-path P when we represent
P in terms of vertices of E i, i = 1,2, . . . ,n, then we get an s-cycle v0 . . .vi . . .v0. This is a
contradiction since H(x) a p-part semitree. The remaining possibility is that all vertices present
in the fp-edge E are different from all vertices present in the s-path P . Then the s-path
P1 = uEv0E1v1E2 . . .vn−1Envn is an s-path having length one more than that of P which is a
contradiction to our assumption that P is the longest s-path in H(x). Therefore, there is no fp-
edge E in H(x) as we defined. So, degv0[H(x)]= 1. Similarly, we can prove that degvn[H(x)]= 1.
That is, there exist at least two vertices in H(x) having degree 1. Totally, G has w(G) semitree
p-parts. Therefore, G has at least 2w(G) number of vertices having degree 1 if we count a vertex
as many times it appears in different p-parts with degree 1.

Theorem 3.4. Let G be a soft semigraph given by {H(x) : x ∈ A} and let u and v be any two
consecutively adjacent vertices of a connected p-part H(x) of G. Then H(x) is a semitree p-part if
and only if every fp-edge E = (u,v) is a p-part bridge.

Proof. Assume that the p-part H(x) of the soft semigraph G is a semitree p-part. Then H(x)
is connected, and it contains no s-cycles. Therefore, no fp-edge of H(x) is part of an s-cycle.
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Therefore, by Theorem 2.2 every fp-edge E = (u,v) is a p-part bridge.
Conversely, suppose that the p-part H(x) of G is connected and every fp-edge E = (u,v) is a

p-part bridge. Then the p-part H(x) has no s-cycles since an fp-edge which is the part of the
s-cycle is not a p-part bridge by Theorem 2.2, that is, H(x) is connected and contents no s-cycles.
Therefore H(x) is a semitree p-part of G.

Theorem 3.5. A soft semitree having at least 2 vertices in each of its p-part is e-bipartite soft
semigraph and hence bipartite soft semigraph

Proof. Let G = (G∗,Q,W , A) be a soft semitree having at least two vertices in each of its p-parts.
Consider any p-part H(x) of G, x ∈ A. Since G is a soft semitree, H(x) is a semitree p-part. We
prove that H(x) is an e-bipartite partial semigraph by mathematical induction on the number
of vertices of the semitree p-part H(x), that is, on the number of elements in Q(x). For n = 2,
the result is true. That is, when n = 2, H(x) is an e-bipartite partial semigraph, since we can
find a partition {Q1(x),Q2(x)} for Q(x) where Q1(x) and Q2(x) contain one vertex each such that
Q1(x) and Q2(x) are e-independent. Assume that the semitree p-part H(x) having less than n
vertices is e-bipartite. Then take a semitree p-part H(x) having n vertices. Let v be the vertex
in H(x) such that degv[H(x)] = 1. Such a vertex exists in H(x) by Theorem 3.3. Also, let u be
the end vertex or partial end vertex of the f edge in H(x), which contributes 1 to degv[H(x)].
Then H(x)−v is a p-part semitree having n−1 vertices and is an e-bipartite partial semigraph
by our induction assumption. Suppose {Q1(x),Q2(x)} is the e-independent bipartition of Q(x)−v
in H(x)− v. Then if u ∈Q1(x), {Q1(x),Q2(x)∪ {v}} is an e-independent bipartition of Q(x) Also,
if u ∈ Q2(x), then {Q1(x)∪ {v},Q2(x)} is an e-independent bipartition of Q(x). Therefore, H(x)
is an e-bipartite partial semigraph. So by mathematical induction, we can say that semitree
p-parts H(x) of G are e-bipartite partial semigraphs, ∀ x ∈ A. Therefore, G is an e-bipartite soft
semigraph and hence bipartite since every e-bipartite soft semigraph is also bipartite.

Example 3.4. Let G∗ = (V , X ) be a semigraph given in Figure 7, where V = {v1,v2,v3,v4,v5,
v6,v7,v8,v9,v10} and X = {(v1,v2,v3), (v3,v4,v5), (v2,v7,v6), (v4,v10,v9), (v8,v9)}.

Figure 7. Semigraph G∗ = (V , X )

Let A = {v2,v9} ⊆ V be a parameter set. Define Q from A to P(V ) by Q(x) = {y ∈ V |
xR y ⇔ x = y or x and y are consecutively adjacent}, ∀ x ∈ A and W from A to P(X p)
by W(x) = {mp edges〈Q(x)〉}, ∀ x ∈ A. That is, Q(v2) = {v1,v2,v3,v7} and Q(v9) = {v8,v9,v10}.
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Also, W(v2) = {(v2,v7), (v1,v2,v3)} and W(v9) = {(v8,v9), (v9,v10)}. Then, H(v2) = (Q(v2),W(v2))
and H(v9) = (Q(v9),W(v9)) are partial semigraphs of G∗ as shown below in Figure 8. Hence
G = {H(v2),H(v9)} is a soft semigraph of G∗.

Figure 8. Soft semigraph G = {H(v2),H(v9)}

Here G has two p-parts H(v2) and H(v9) and both are semitree p-parts. Hence, G is a soft
semitree. Also, each p-part has at least two vertices and Q(v2)= {v1,v2,v3,v7} can be partitioned
into sets {Q1(v2),Q2(v2)}, where Q1(v2)= {v1,v2} and Q2(v2)= {v3,v7}. Then, Q1(v2) and Q2(v2)
are e-independent since no two end vertices or partial end vertices of an f -edge in W(v2) belong
to Q1(v2) or Q2(v2). Also, Q(v9)= {v8,v9,v10} can be partitioned into sets {Q3(v9),Q4(v9)}, where
Q3(v9)= {v8,v10} and Q4(v9)= {v9}. Then, Q3(v9) and Q4(v9) are e-independent since no two end
vertices or partial end vertices of an f -edge in W(v9) belong to Q3(v9) or Q4(v9). Therefore, H(v2)
and H(v9) are e-bipartite partial semigraphs of G∗ and hence, G = {H(v2),H(v9)} is an e-bipartite
soft semigraph. Again, Q(v2)= {v1,v2,v3,v7} can be partitioned into sets {Q1(v2),Q2(v2)}, where
Q1(v2)= {v1,v3,v7} and Q2(v2)= {v2}. Then, Q1(v2) and Q2(v2) are independent since, no edge in
W(v2) is an mp edge〈Q1(v2)〉 or an mp edge〈Q2(v2)〉. Also, Q(v9)= {v8,v9,v10} can be partitioned
into sets {Q3(v9),Q4(v9)}, where Q3(v9)= {v8,v10} and Q4(v9)= {v9}. Then, Q3(v9) and Q4(v9) are
independent since, no edge in W(v9) is an mp edge〈Q3(v9)〉 or an mp edge〈Q4(v9)〉. Therefore,
H(v2) and H(v9) are bipartite partial semigraphs of G∗ and hence, G = {H(v2),H(v9)} is a
bipartite soft semigraph.

Remark 3.2. If a soft semigraph G is e-bipartite (and hence bipartite), then G need not be a
soft semitree. This is clear from the following example.

Example 3.5. Let G∗ = (V , X ) be a semigraph given in Figure 9, where V = {v1,v2,v3,v4,v5,v6,
v7,v8} and X = {(v1,v2), (v2,v3,v4,v5), (v5,v6,v7,v8), (v3,v6)}.

Figure 9. Semigraph G∗ = (V , X )
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Let A = {v3,v7} ⊆ V be a parameter set. Define Q from A to P(V ) by Q(x) = {y ∈
V | xR y ⇔ x = y or x and y are adjacent}, ∀ x ∈ A and W from A to P(X p) by W(x) =
{mp edges〈Q(x)〉}, ∀ x ∈ A. That is, Q(v3) = {v2,v3,v4,v5,v6} and Q(v7) = {v5,v6,v7,v8}. Also,
W(v3)= {(v2,v3,v4,v5), (v5,v6), (v3,v6)} and W(v7)= {(v5,v6,v7,v8)}. Then, H(v3)= (Q(v3),W(v3))
and H(v7) = (Q(v7),W(v7)) are partial semigraphs of G∗ as shown below in Figure 10. Hence
G = {H(v3),H(v7)} is a soft semigraph of G∗.

Figure 10. Soft Semigraph G = {H(v3),H(v7)}

Here G has two p-parts H(v3) and H(v7) and both are semitree p-parts. Hence, G is a
soft semitree. Also, each p-part has at least two vertices and Q(v3) = {v2,v3,v4,v5,v6} can
be partitioned into sets {Q1(v3),Q2(v3)}, where Q1(v3) = {v2,v6} and Q2(v3) = {v3,v4,v5}. Then,
Q1(v3) and Q2(v3) are e-independent since no two end vertices or partial end vertices of an
f -edge in W(v3) belong to Q1(v3) or Q2(v3). Also, Q(v7)= {v5,v6,v7,v8} can be partitioned into
sets {Q3(v7),Q4(v7)}, where Q3(v7) = {v5,v7} and Q4(v7) = {v6,v8}. Then, Q3(v7) and Q4(v7) are
e-independent since no two end vertices or partial end vertices of an f -edge in W(v7) belong to
Q3(v7) or Q4(v7). Therefore, H(v3) and H(v7) are e-bipartite partial semigraphs of G∗ and hence,
G = {H(v3),H(v7)} is an e-bipartite soft semigraph. Again Q1(v3) and Q2(v3) are independent
since, no edge in W(v3) is an mp edge〈Q1(v3)〉 or an mp edge〈Q2(v3)〉. Also Q3(v7) and Q4(v7) are
independent since, no edge in W(v7) is an mp edge〈Q3(v7)〉 or an mp edge〈Q4(v7)〉. Therefore,
H(v3) and H(v7) are bipartite partial semigraphs of G∗ and hence, G = {H(v3),H(v7)} is a
bipartite soft semigraph. But G is not a soft semitree since H(v3) is not a semitree p-part.

Theorem 3.6. Let G = (G∗,Q,W , A) be a soft semigraph given by {H(x) : x ∈ A}. Then, H(x) for

some x ∈ A is a semitree p-part if and only if |Q(x)| + |W(x)| =
|W(x)|∑

i=1
|E i| +1, where |Q(x)| and

|W(x)| represents number of elements in Q(x) and W(x) respectively and |E i| represents number
of vertices present in the f edge of E i.

Proof. Let G be a semigraph with p vertices and q edges E i, i ≤ i ≤ q and k p-parts. Then

G contains no cycles if and only if p+ q =
q∑

i=1
|E i|+ k, by Theorem 2.1. Here H(x) is a partial

semigraph of G∗ having p = |Q(x)|, q = |W(x)| and k = 1. Therefore,

|Q(x)|+ |W(x)| =
|W(x)|∑

i=1
|E i|+1 . (3.1)
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Conversely, assume that condition (3.1) is satisfied. Let H(x) be the graph satisfying this
condition. Then, by the above theorem, H(x) contains no s-cycles and is connected since k = 1.
Therefore, H(x) is a semitree p-part.

Theorem 3.7. Let G = (G∗,Q,W , A) be a soft semitree given by {H(x) : x ∈ A}. Then,
∑

x∈A
|Q(x)|+

∑
x∈A

|W(x)| = ∑
x∈A

|W(x)|∑
i=1

|E i|+ |A|, where |E i| denotes the number of vertices present in the edge E i

for other sets ‘| |’ denotes ‘the number of elements in’.

Proof. Assume that G is a soft semitree given by {H(x) : x ∈ A}. Then each p-part H(x) is a

semitree p-part. Then, by Theorem 3.6, we have |Q(x)|+ |W(x)| =
|W(x)|∑

i=1
|E i|+1, ∀ x ∈ A. We have

totally |A| semitree p-parts, and this is true for all. Adding the terms for all H(x), we get∑
x∈A

|Q(x)|+ ∑
x∈A

|W(x)| = ∑
x∈A

|W(x)|∑
i=1

|E i|+ |A|.

Example 3.6. Consider the semigraph G∗ = (V , X ) and soft semitree G = {H(v3),H(v5)} given in
Example 3.3. Here,∑

x∈A
|Q(x)|+ ∑

x∈A
|W(x)| = (5+4)+ (2+1)= 12.

Also, ∑
x∈A

|W(x)|∑
i=1

|E i|+ |A| = (4+2)+ (4)+2= 12.

That is,∑
x∈A

|Q(x)|+ ∑
x∈A

|W(x)| = ∑
x∈A

|W(x)|∑
i=1

|E i|+ |A|.

4. Conclusion
This research has furthered the integration of soft set theory with semigraphs, resulting
in a robust theoretical framework for soft semigraphs. By employing parameterization, soft
semigraphs offer a versatile and nuanced approach to representing complex relationships
within semigraphs. Our study has introduced soft semitrees within soft semigraphs, providing
a foundation for further exploration of their algebraic properties and potential applications.
Additionally, we have established the relation between various bipartite soft semigraphs and
soft semitrees, which enhances our understanding of soft semigraphs. These advancements
not only expand the theoretical base of soft semigraphs but also pave the way for practical
applications in various fields requiring detailed graph analysis. This work underscores the
importance of parameterization in graph theory and opens new directions for future research in
the study of soft semigraphs.
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