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Abstract. A multiscale porous biocatalytic electrode’s oxidation of glucose is explained theoretically.
The model that describes diffusion and response within a hydrogel film is composed by two non-linear
differential equations. Approximate analytical findings of the glucose concentrations, current, and the
oxidised mediator have been obtained via the new homotopy perturbation technique. Furthermore, an
analytical calculation is performed to determine the ideal electrode thickness for the film by employing
Ananthaswamy-Sivasankari Method (ASM). It also investigates how parameters affect current. Our
approximate analytical expressions are validated by the numerical simulation (MATLAB).
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1. Introduction
Porous electrodes are currently of great interest from both a theoretical and practical point
of view. The design of miniature electro devices such as biobatteries, enzymatic reactors,
biofuel cells, and biosensors depends on such enzymatic electrodes (Cosnier et al. [8], Do
et al. [9], and Leech et al. [17]). Using a direct electron transfer, Do et al. [9] created one-
dimensional complete along with reduced porous electrode systems to replicate and examine
the behaviour of an enzyme porous electrode. According to Barcia et al. [4], electrochemical
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impedance spectroscopy serves as an extremely beneficial method for figuring out the properties
of porous electrodes. Galceran et al. [10] used an iterative approach for the finite element
technique to calculate the time independent currents on an inlaid microdisc electrode of an
enzyme-catalyzed reaction that is mediated by redox.

An electro-deposition theory for simulating cyclic voltammetry and chronoamperometry
on porous electrodes constructed round spherical templates was provided to Barnes et al. [5].
By approximating the decoupling for bulk diffusion for the surface in electrode along with
diffusion inside a porous electrode, a theoretic approach for extracting rate constants for
heterogeneous in the systems and irreversible as well as quasireversible had been presented.
Nam and Bonnecaze [21] used known flow field results over an infinite porous rotating disk to
build analytical models on the advection-dominated as well as diffusion-dominated regimes on
the porous rotating disc electrode. In the enzyme-based biofuel cells (EBFC), supported glucose
oxidase and mediator immobilise, Chan et al. [7] develop a dynamic model that simulates the
anode’s discharge performance. Ke et al. [16] present a three-dimensional representation for
a serpentine flow field across a porous carbon electrode within a flow battery. Considering
the model system of glucose oxidation catalysed by glucose oxidase, Wen et al. [25] reported a
quantitative investigation related to reaction as well as transport within porous biocatalytic
electrodes on multiscale. Bartlett and Pratt et al. [6] give a thorough analysis about the diffusion
as well as reaction inside a uniform film comprising immobilised enzyme and also mediator
over an electrode surface.

This work aims to get approximate analytical formulas to calculate the non-dimensional
concentration of both the redox mediator and substrate by utilising NHPM. This approach
requires a single iteration compared to other numerical and approximate analytical expressions.
A comparison and graphical display are then performed between the approximate analytical
expressions and the numerical simulation. Graphical representations are employed to illustrate
the effect for a several parameters, including the relative amount of depletion, the saturation
parameter, and the enzymatic reaction. Additionally, current is calculated by employing NHPM.
ASM is utilized to solve the non-dimensional concentration inside the porous electrode.

2. Mathematical Structure of the Problem
The chemical reaction taking place inside the motorbike porous electrode is able to explained by
the following (Wen et al. [25]):

glucose+2 MOX
GOX−−−→ gluconolactone+2 Mred , (2.1)

2 Mred
electrode−−−−−−→ 2 MOX +2e− . (2.2)

The substrate (glucose) S, is oxidised with the help of the enzyme glucose oxidase (G Ox), as
shown in equation (2.1). Furthermore, equation (2.2) represents the mediator’s reoxidation
at the electrode surface, which generates the current. The oxidised mediator as well as the
substrate within the hydrogel sheet in ping-pong bi-bi enzyme kinetics can be represented using
the following one-dimensional mass balance equations (Wen et al. [25]),

DM
d2Mox(x)

dx2 − kcatE ·S(x)Mox(x)
KSMox(x)+KMS(x)+S(x) Mox(x)

= 0 , (2.3)
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DS
d2S(x)

dx2 − kcatE ·S(x)Mox(x)
2(KSMox(x)+KMS(x)+S(x)Mox(x))

= 0 , (2.4)

where Mo x denotes the oxidized mediator S represents the substrate, and E indicates
the enzyme concentrations (mol cm−3), respectively. Here, x denotes the location within the
hydrogel film’s thickness. Equations (2.3) and (2.4) holds the boundary conditions as shown
below:

x = 0, Mox(x)= M0

(1+ e−ε)
,

ds(x)
dx

= 0, (2.5)

x = l,
dMo(x)

dx
= 0, S(x)= S0 . (2.6)

Mo is the mediator’s reference concentration and S0 is the substrate’s reference concentration
(mol cm−3), respectively. The non-dimensional potential is provided by ε= (E−E0)nF

RT .
The current density i on the surface of electrode is calculated as

i(S)= 2F j(S)= 2FDS
ds
dx

∣∣∣∣
x=1

. (2.7)

To simplify equations (2.3) and (2.4) into a non-dimensional form, the following non-dimensional
variable will be introduced

M = Mred

Mo
, S = S

So
, X = x

l
, κ= l

√
kcatE

DM Mo
, µ= KM

Mo
, σ= KS

So
, η= DSS0

DM Mo
. (2.8)

The oxidised mediator and substrate concentration’s in non-dimensional are denoted by M
and S. X represents the non-dimensional distance from the film interface. The remaining
parameters are enzymatic reaction κ, saturation parameters µ, σ and η relative amount of
the depletion. Utilizing equation (2.8), we attain the subsequent non-dimensional equation for
the planar film model,

d2M
dX2 − κ2S(x)M(x)

σM(x)+µS(x)+S(x)M(x)
= 0 , (2.9)

d2S
dX2 − κ2S(x)M(x)

η(σM(x)+µS(x)+S(x)M(x))
= 0 . (2.10)

The respective boundary conditions for equations (2.9) and (2.10) are

X = 0, M = 1
(1+ e−ε)

= Mε,
dS
dX

= 0 , (2.11)

X = 1,
dM
dX

= 0, S = 1 . (2.12)

The non-dimensional current ψ is given as follows

ψ= dS
dX

∣∣∣∣
X=1

. (2.13)

2.1 Porous Electrode Model
Based on the concept previously mentioned, the autonomous mobile species within the porous
electrode represents the substrate. The substrate concentration within the porous electrode can
be found using the diffusion as well as convection equation, as mentioned by Wen et al. [25],

εgDSS′′(y)+υdS
d y

= a j(S) . (2.14)
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The boundary conditions are:

at y= 0,
dS
d y

= 0, (2.15)

at y= L, S = S0 , (2.16)

where εg denotes porosity of the film-loaded toray carbon paper, DS indicates the diffusion
coefficient for substrate, υ represents the velocity of fluid element, a denotes the surface area
per unit volume of the toray carbon paper, j denotes the flux and y indicates the position
within the porous electrode. Also, L represent the thickness of the toray carbon paper and S0
represents the reference concentration for mediator.

The following non-dimensional variables are introduced.

s = S
S0

, Y = y
l

, Pe= υL
DS

, δ= aL2

l
. (2.17)

Here s is the non-dimensional substrate concentration, Y denotes the position within the porous
electrode, Pe represent the peclet number, δ indicates the dimensionless area of the toray carbon
paper.

By utilizing the above mentioned non-dimensional variables, equation (2.14) can be
diminished as follows

d2s(y)
dY 2 + Pe

εg
· ds(y)

dY
= δψ

εg
. (2.18)

The associated non-dimensional boundary conditions are provided by

at Y = 0,
ds
dY

= 0, (2.19)

at Y = 1, s = 1. (2.20)

Y is the position within the porous electrode.

3. Approximate Analytical Expressions

3.1 Approximate Analytical Expression for equations (2.9)-(2.12) by Utilizing New
Homotopy Perturbation Technique

Both linear as well as non-linear differential equations, which may model a broad variety of
behaviours, have a major influence on numerous scientific and technological domains. There are
several non-linear differential equations for which there are insufficient analytical solutions.
The variational iterative technique by Wazwaz [24], homotopy perturbation approach by Meena
and Rajendran [18], new homotopy perturbation technique by Mehala and Rajendran[19] and
homotopy analysis technique by Rasi et al. [22], The adomian decomposition technique by
Adomian [1] which are the some approximate analytical methods that are used for solving
differential equations in non-linear approximately.

He proposed the homotopy perturbation method (HPM) to create analytical approximations
([11–15]). The most effective and practical way to get an approximate analytical solution
for differential equations, both linear and non-linear, is through the use of HPM. A variety
of boundary and initial value problems have been shown to respond well to the homotopy
perturbation strategy by Mousa and Ragab [20]. The perturbation approach is predicated
on the small-parameter assumption. The approximate analytical expressions attained by
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perturbation technique can be appropriate over small amounts of minor parameters since
the significant numbers of non-linear problems. Generally, perturbation solutions work just
as well when the parameters of the scientific system are small. Since there is no standard
for the presence of minor parameters, the approximation cannot be completely relied upon.
Consequently, it is essential to confirm the approximation’s accuracy both analytically and
experimentally. HPM has recently been proposed as an alternative for these issues. He [13]
then applies a novel method based on homotopy perturbation technique to the zeroth iteration
of solving non-linear differential equations.

The semi-analytical expressions for the equations (2.9)-(2.10) in non-dimensional form by
utilizing new homotopy perturbation technique (Ananthaswamy et al. [2,3]) is given by:

M(x)= Mε

coshp
γ(X −1)

coshp
γ

, (3.1)

S(x)= cosh
p
λX

cosh
p
λ

, (3.2)

where

γ= κ2

σ+µ+1
, (3.3)

λ= κ2

η(σ+µ+1)
. (3.4)

The current ψ is given by

ψ=λsinh(λ)
cosh(λ)

. (3.5)

3.2 Approximate Analytical Expression for Equation (2.19) by Utilizing Ananthaswamy-
Sivasankari Method (ASM)

A recently developed method for resolving second-order non-linear ordinary differential
equations is known as the Ananthaswamy-Sivasankari Method (ASM) [23]. It can also be
utilized to resolve non-linear and linear differential equations. This method can also be readily
extended to handle a number of other non-linear issues in the physical, biological, and chemical
sciences. The new approach that has been provided, though, can be used for boundary value
problems.

The approximate analytical expression for equation (2.18) by utilizing Ananthaswamy-
Sivasankari Method (ASM) as follows:

s (y)= cosh(aY )
cosh(a)

, (3.6)

where

a =−1.4741 . (3.7)

4. Numerical Simulation
For the differential equations that are non-linear, numerical simulation can verify the efficacy
of our approximate analytical expression. MATLAB functions pdex4 are employed for equations
(2.9)-(2.12). The semi-analytical results and the numerical simulation show good agreement, as
shown in Figures 1-2.
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Table 1. Comparing the numerical simulation with our approximate analytical results (NHPM) eqn. (3.1)
by setting the values of saturation parameters and ratio of enzymatic reaction

X k = 0.2 k = 0.6 k = 0.01

Numerical NHPM (3.1) Error % Numerical NHPM (3.1) Error % Numerical NHPM (3.1) Error %

0 1 1 0.0000 1 1 0.0000 0.9826 0.9826 0.0000

0.2 0.9937 0.9938 0.0001 0.9445 0.9444 0.0001 0.9833 0.9834 0.0001

0.4 0.9889 0.9989 0.0000 0.9014 0.9012 0.0002 0.9854 0.9854 0.0000

0.6 0.9854 0.9855 0.0001 0.8706 0.8704 0.0002 0.9889 0.9888 0.0001

0.8 0.09833 0.9834 0.0001 0.8521 0.8519 0.0002 0.9937 0.9937 0.0000

1 0.9826 0.9827 0.0001 0.8460 0.8457 0.0003 1 1 0.0000

Absolute Average Error % 0.0001 0.0001 0.0001

5. Results and Discussion
The semi-analytical findings for the concentrations of the substrate as well as the product are
attained. In Figures 1-2 display that the comparison between the numerical simulation and
the attained semi-analytical expressions. The numerical simulation of experimental data for
all parameters agrees exactly with the approximate analytical expressions. From Table 1 we
noted that the error percentage is < 0.0001% by comparing the numerical simulation and our
approximate analytical results (NHPM).

Non-dimensional concentration of oxidised mediator. Figure 1 displays that the non-
dimensional concentration of oxidised mediator M versus the non-dimensional distance X . The
value of ratio of enzymatic reaction k get increases than the non-dimensional concentration
falls, as shown in Figure 1(a). Figures 1(b) and 1(c) illustrates that the values of saturation
parameter σ and µ get rises so does the non-dimensional concentration.

(a) Impact of ratio of enzymatic reaction kin non-
dimensional concentration of oxidised mediator M

(b) Variation of saturation parameter σ in non-
dimensional concentration of oxidised mediator M

(Figure continued)
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(c) Influence of saturation parameter µ in non-
dimensional concentration of oxidised mediator M

Figure 1

(a) Effect of ratio of enzymatic reaction k in non-
dimensional concentration of substrate S

(b) Impact of saturation parameter σ in non-
dimensional concentration of substrate S

(c) Variation of saturation parameter µ in non-
dimensional concentration of substrate S

(d) Influence of relative amount of the depletion η in
non-dimensional concentration of substrate S

Figure 2
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(a) Effect of saturation parameter µ in non-
dimensional current ψ

(b) Impact of relative amount of the depletion η in
non-dimensional current ψ

(c) Variation of ratio of enzymatic reaction k in non-
dimensional current ψ

Figure 3

(a) Influence of non-dimensional area of the
toray carbon paper δ in non-dimensional
concentration s(y)

(b) Effect of porosity of the film-loaded toray carbon
paper εg in non-dimensional concentration s(y)

(Figure continued)
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(c) Impact of peclet number Pe in non-dimensional
concentration s(y)

(d) Variation of ψ in non-dimensional concentration
s(y)

Figure 4

Non-dimensional concentration of substrate. Figure 2 depict that non-dimensional
concentration of substrate S versus the non-dimensional distance X . Figure 2(a) depicts that
the value of ratio of enzymatic reaction k get rises, than the non-dimensional concentration get
drops. Figures 2(b)-2(d) shows that, by increasing the values of saturation parameter σ, µ and
η, than the non-dimensional concentration also get increases.

Non-dimensional current. Figure 3(a) interline that non-dimensional current ψ versus
saturation parameter η. From this figure, we noted that the amount of saturation parameter µ
increases than the corresponding current get drops. Figure 3(b) displays that the nondimensional
current ψ versus the saturation parameter µ. It shows that the values of saturation parameter
get raises then the corresponding current get falls. Figure 3(b) interline that the nondimensional
current ψ versus the saturation parameter σ. From this figure, it indicates that the quantities
of ratio of enzymatic reaction k get rises so does the current.

Non-dimensional concentration of substrate inside porous electrode. Figure 4
demonstrates that the non-dimensional substrate concentration s(y) inside the porous electrode.
Figures 4(a) and 4(d) interline that when the values of toray carbon paper δand ψ increase, the
corresponding get drops. Figures 4(b) and 4(c) depicts that by raising the values of porosity of
the film-loaded toray carbon paper εg and peclet number Pe, so does the concentration.

6. Conclusion
A multiscale porous biocatalytic electrode was investigated mathematically and reported.
The semi-analytical expression of the oxidized mediator concentrations, substrate as well
as current density was attained. The systems of non-linear equations were resolved employing
new homotopy perturbation technique. The approximate analytical solutions that were derived
satisfy the numerical simulation very well. This paper also examines how several parameters
like rate constants, diffusion coefficient and thickness, voltage, influence the current. The porous
electrode model’s approximate analytical expressions of the substrate and current were also
provided. By employing this method, we can able to resolve the non-linear problems like
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Michaelis-Menten kinetics, Non-Michaelis Menten kinetics.
The following results are attained from the above:

• By raising the amount of saturation parameter µ and relative amount of the depletion η,
then the corresponding current get drops.

• By raising the amount of ratio of enzymatic reaction kso does the corresponding current.

Appendix A: Approximate Analytical Expression for
Equations (2.9)-(2.12) by Employing New

Homotopy Perturbation Technique
We attained the approximate analytical solutions to equations (2.9) to (2.12) in this appendix
utilizing the new homotopy perturbation approach.

We generate the homotopy shown below for equations (2.9)-(2.12):

(1− p)
[

d2M
dX2 − κ2SM

σM+µS+SM

]
+ p

[
d2M
dX2 − κ2SM

σM+µS+SM

]
= 0, (A.1)

(1− p)
[

d2S
dX2 − κ2SM

η(σM+µS+SM)

]
+ p

[
d2S
dX2 − κ2SM

η(σM+µS+SM)

]
= 0, (A.2)

(1− p)
[

d2M
dX2 − κ2S(1)M

σM(1)+µS(1)+S(1)M(1)

]
+ p

[
d2M
dX2 − κ2S(1)M

σM(1)+µS(1)+S(1)M(1)

]
= 0, (A.3)

(1− p)
[

d2S
dX2 − κ2SM(1)

η(σM(1)+µS(1)+S(1)M(1))

]
+ p

[
d2S
dX2 − κ2SM(1)

η(σM(1)+µS(1)+S(1)M(1))

]
= 0.

(A.4)
Equations (A.3) and (A.4) have approximate analytical solutions, which are

M = M0 + pM1 + p2M2 + . . . , (A.5)

S = S0 + pS1 + p2S2 + . . . . (A.6)

Equating the coefficients of p0, after substituting equations (A.5) and (A.6) in equations (A.3)
and (A.4), then we attain

p0 :
d2M0

dX2 − κ2M0

σ+µ+1
= 0 , (A.7)

p0 :
d2S0

dX2 − κ2S0

η(σ+µ+1)
= 0 . (A.8)

Now equations (A.7) and (A.8) becomes
d2M0

dX2 −γM0 = 0 , (A.9)

d2S0

dX2 −λS0 = 0 , (A.10)

where

γ= κ2

σ+µ+1
, (A.11)

λ= κ2

η(σ+µ+1)
. (A.12)
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The boundary conditions for the aforementioned equation are listed below

X = 0, M0 = 1
(1+ e−ε)

= Mε,
dS0

dX
= 0, Mi = 0,

dSi

dX
= 0, i = 1,2,3, . . . , (A.13)

X = 1,
dM0

dX
= 0, S0 = 1,

dMi

dX
= 0, Si = 0, i = 1,2,3, . . . . (A.14)

Now solving equations (A.9) and (A.10) by using the equations (A.13) and (A.14), we attained

M(x)= Mε

coshp
γ(X −1)

coshp
γ

, (A.15)

S(x)= cosh
p
λX

cosh
p
λ

, (A.16)

where γ and λ defined in equations (A.11) and (A.12).

Appendix B: Approximate Analytical Expression for
Equation (2.18) by Employing Ananthaswamy-Sivasankari

Method
The semi-analytical expression for the non-dimensional substrate concentration inside the
porous electrode s(y) is attained approximately by utilizing ASM is described below.

In order to satisfy the boundary condition, the approximate analytical solution to equation
(2.18) is as follows:

s(Y )= AeaY +Be−aY , (B.1)
ds
dY

= aAeaY −aBe−aY . (B.2)

Employing the boundary conditions in equations (2.19) and (2.20), we attained the value of the
parameters A and B as:

A = B, A = 1
ea + e−a . (B.3)

Thus, equation (B.1), becomes

s(Y )= eaY + e−aY

ea + e−a . (B.4)

Now by utilizing equation (B.4) in equation (2.20) and on simplification, we yield

a2
(

eaY + e−aY

ea + e−a

)
+ Pe
εg

a
(

eaY − e−aY

ea + e−a

)
− δψ

εg
= 0. (B.5)

Now taking, equation (B.5) becomes

a2 + Pe
εg

atanh(a)− δψ

εg
= 0. (B.6)

On solving equation (B.6) by substituting the values of δ= 7, ψ= 0.5, εg = 1, Pe= 1, we get the
value of the parameter m as follows:

a =−1.4741 . (B.7)

Hence an semi-analytical expressions of the non-dimensional substrate concentration inside
the porous electrode s(y) equation (2.18) is obtained as

s(Y )= eaY + e−aY

ea + e−a . (B.8)
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Appendix C: Nomenclature

Symbols Meanings
δ Dimensionless area of the Toray carbon paper
η Relative amount of depletion of the substrate and oxidized mediator within the film
µ,σ Saturation parameter for mediator and substrate
ν Velocity of fluid element, cm2 s−1

ψ Dimensionless current
ψP Dimensionless current for porous electrode model
Pe Peclet number
ε Dimensionless potential
εg Porosity of the film-loaded Toray carbon paper
a Surface area per unit volume of the Toray carbon paper, cm3 cm−3

DM Diffusion coefficient for mediator, cm2 s−1

DS Diffusion coefficient for substrate, cm2 s−1

E Concentration of enzyme, mol, cm−3

E0 Formal potential of the mediator couple, V (SHE)
F Faraday constant, As mol−1

I Current density, A
j Flux, cm2 s−1

k Ratio of the enzymatic reaction within in the film to the diffusion of the oxidized
mediator

kcat Electron turnover number, s−1

KM , KS Michaelis-Menten rate constant for the mediator and substrate, mol, cm−3

L Thickness of the Toray carbon paper, µ m
m Dimensionless concentration of oxidized mediator
Mo x Concentration of oxidized mediator, mol, cm−3

M0 Reference concentration for mediator, mol, cm−3

N Number of electrons Nil
R Universal gas constant, J mol−1 K−1

s Dimensionless concentration of substrate
S Concentration of substrate, mol, cm−3

S0 Reference concentration for mediator, mol, cm−3

T Absolute temperature, K
x Dimensional position within the hydrogel film, cm
X Dimensionless distance from the film interface
y Dimensional position within the Porous electrode, µ m
Y Dimensionless Position within the porous electrode
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Mathematical modeling of a porous enzymatic electrode with direct electron transfer mechanism,
Electrochimica Acta 137 (2014), 616 – 626, DOI: 10.1016/j.electacta.2014.06.031.

[10] J. Galceran, S. L. Taylor and P. N. Bartlett, Modelling the steady-state current at the inlaid disc
microelectrode for homogeneous mediated enzyme catalysed reactions, Journal of Electroanalytical
Chemistry 506(2) (2001), 65 – 81, DOI: 10.1016/S0022-0728(01)00503-4.

[11] J.-H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear
problems, International Journal of Non-Linear Mechanics 35(1) (2000), 37 – 43, DOI: 10.1016/S0020-
7462(98)00085-7.

[12] J.-H. He, A simple perturbation approach to Blasius equation, Applied Mathematics and
Computation 140(2-3) (2003), 217 – 222, DOI: 10.1016/S0096-3003(02)00189-3.

[13] J.-H. He, Homotopy perturbation method: A new nonlinear analytical technique, Applied
Mathematics and Computation 135(1) (2003), 73 – 79, DOI: 10.1016/S0096-3003(01)00312-5.

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 1241–1254, 2024

http://doi.org/10.1016/S0013-4686(02)00081-6
http://doi.org/10.1016/j.jelechem.2014.03.028
http://doi.org/10.1016/0022-0728(95)04236-7
http://doi.org/10.3390/en5072524
http://doi.org/10.1016/j.jpowsour.2016.05.133
http://doi.org/10.1016/j.electacta.2014.06.031
http://doi.org/10.1016/S0022-0728(01)00503-4
http://doi.org/10.1016/S0020-7462(98)00085-7
http://doi.org/10.1016/S0020-7462(98)00085-7
http://doi.org/10.1016/S0096-3003(02)00189-3
http://doi.org/10.1016/S0096-3003(01)00312-5


1254 A Semi-Analytical Study on Multiscale Porous Biocatalytic Electrodes. . . : V. Vijayalakshmi et al.

[14] J.-H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and
Engineering 178(3-4) (1999), 257 – 262, DOI: 10.1016/S0045-7825(99)00018-3.

[15] J. H. He, Some asymptotic methods for strongly nonlinear equations, International Journal of
Modern Physics B 20(10) (2006), 1141 – 1199, DOI: 10.1142/S0217979206033796.

[16] X. Ke, J. M. Prahl, J. I. D. Alexander and R. F. Savinell, Redox flow batteries with serpentine
flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon
electrodes and effects on performance, Journal of Power Sources 384 (2018), 295 – 302,
DOI: 10.1016/j.jpowsour.2018.03.001.

[17] D. Leech, P. Kavanagh and W. Schuhmann, Enzymatic fuel cells: Recent progress, Electrochimica
Acta 84 (2012) 223 – 234, DOI: 10.1016/j.electacta.2012.02.087.

[18] A. Meena and L. Rajendran, Analysis of a pH-based potentiometric biosensor using the
Homotopy perturbation method, Chemical Engineering & Technology 33(12) (2010), 1999 – 2007,
DOI: 10.1002/ceat.200900580.

[19] N. Mehala and L. Rajendran, Analysis of mathematical modelling on potentiometric biosensors,
International Scholarly Research Notices 2014(1) (2014), 582675, DOI: 10.1155/2014/582675.

[20] M. M. Mousa and S. F. Ragab, Applications of the homotopy perturbation method to linear and
non-linear Schrödinger equations, Zeitschrift für Naturforschung A 63(3-4) (2008), 140 – 144,
DOI: 10.1515/zna-2008-3-404.

[21] B. Nam and R. T. Bonnecaze, Analytic models of the infinite porous rotating disk electrode, Journal
of the Electrochemical Society 154(10) (2007), F191, DOI: 10.1149/1.2759834.

[22] M. Rasi, K. Indira and L. Rajendran, Approximate analytical expressions for the steady-
state concentration of substrate and cosubstrate over amperometric biosensors for different
enzyme kinetics, International Journal of Chemical Kinetics 45(5) (2013), 322 – 336,
DOI: 10.1002/kin.20768.

[23] V. Vijayalakshmi, V. Ananthaswamy and J. A. Jothi, Semi-analytical study on non-isothermal
steady R-D equation in a spherical catalyst and biocatalyst, CFD Letters 15(12) (2023), 60 – 76,
DOI: 10.37934/cfdl.15.12.6076.

[24] A.-M. Wazwaz, The variational iteration method for solving linear and nonlinear ODEs
and scientific models with variable coefficients, Open Engineering 4(1) (2014), 64 – 71,
DOI: 10.2478/s13531-013-0141-6.

[25] H. Wen, K. Ramanujam and S. C. Barton, Multiscale carbon materials as supports for bioelectrodes,
ECS Transactions 13(21) (2008), 67, DOI: 10.1149/1.3036212.

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 1241–1254, 2024

http://doi.org/10.1016/S0045-7825(99)00018-3
http://doi.org/10.1142/S0217979206033796
http://doi.org/10.1016/j.jpowsour.2018.03.001
http://doi.org/10.1016/j.electacta.2012.02.087
http://doi.org/10.1002/ceat.200900580
http://doi.org/10.1155/2014/582675
http://doi.org/10.1515/zna-2008-3-404
http://doi.org/10.1149/1.2759834
http://doi.org/10.1002/kin.20768
http://doi.org/10.37934/cfdl.15.12.6076
http://doi.org/10.2478/s13531-013-0141-6
http://doi.org/10.1149/1.3036212

	Introduction
	Mathematical Structure of the Problem
	Porous Electrode Model

	Approximate Analytical Expressions
	Approximate Analytical Expression for equations (2.9)-(2.12) by Utilizing New Homotopy Perturbation Technique
	Approximate Analytical Expression for Equation (2.19) by Utilizing Ananthaswamy-Sivasankari Method (ASM)

	Numerical Simulation
	Results and Discussion
	Conclusion
	References

